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This paper extends hierarchical analysis to the case where the participants are allowed to 
employ fuzzy ratios in place of exact ratios. If a person considers alternative A more important 
than alternative B, then the ratio used might be approximately 3 to 1, or between 2 to 1, and 4 
to 1, or at most 5 to 1. The painvise comparison of the issues and the criteria in the hierarchy 
produce fuzzy positive reciprocal matrices. The geometric mean method is employed to 
calculate the fuzzy weights for each fuzzy matrix, and these are combined in the usual manner 
to determine the final fuzzy weights for the alternatives. The final fuzzy weights are used to 
rank the alternatives from highest to lowest. The highest ranking contains all the undominated 
issues. The procedure easily extends to the situation where many experts are utilized in the 
ranking process, or to the case of missing data. Two examples are presented showing the final 
fuzzy weights and the final ranking. 

Keywords: Decision making, Multicriteria analysis. 

1. Introduction 

This paper develops Saaty’s hierarchical analysis [7, 8, 91, when the experts 
(judges,. . .) are allowed to use fuzzy ratios in place of exact ratios. In Saaty’s 
hierarchical analysis a person (expert, judge, . . .) is asked to supply ratios oii for 
each pairwise comparison between issues (alternatives, candidates, . . .) Al, 
AZ, . . . , A,,, for each criterion (objective) in a hierarchy, and also between the 
criteria. For some specific criterion, if a person considers A1 more important than 
As, then al5 might equal 3/l, or 5/l, or 7/l. The numbers for the ratios are 
usually taken from the set {1,2,. . . ,9} so ai5 could be sJs5 for sir SUE 
u,2, * * * > 9) and s1>s5. The ratios aii indicate, for this expert, the strength with 
which Ai dominates Ai. If ui5 is equal to 5/l, then us1 is taken as l/5. That is, 
aii = a;’ and aii = 1 for all i. Let A be the m x m matrix whose entries are the 
ratios eii. A is called a positive reciprocal matrix. Saaty’s procedure uses the 
pairwise comparison matrices A for each criterion, and also the pairwise compari- 
son matrix for the criteria, to compute a final set of weights Wi (Wi > 0, w r + * * * + 
Wl?l = 1) for the alternatives which can be used to rank the issues from highest to 
lowest. 

*A preliminary version of this paper was given at the Annual Meeting of the Society for Risk 
Analysis, in Knoxville, TN, October, 1984. 
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In this paper the aii can be fuzzy numbers [2-S]. Fuzzy numbers can express an 
expert’s feeling that a ratio aii is approximately 5 to 1 instead of exactly 5/l, or 
that a ratio is between 6 to 1 and 8 to 1 instead of exactly 7/l. We all recognize 
that it is difficult for people to always assign exact ratios when comparing two 
alternatives. When comparing Ai and A5 a person might feel that A1 is much 
more important than AS. Does this mean that al5 equals 7/l, or 8/l, or 9/l? 
Using fuzzy numbers the expert can respond that al5 is between 7 to 1 and 9 to 1. 
Also, a person could feel that Al is a little tmore important than A,. An 
appropriate fuzzy ratio in this case might be approximately 3 to 1. Fuzzy numbers 
automatically incorporate the vagueness of these replies. 

In the next section we introduce the fuzzy numbers which experts will be 
allowed to use in pairwise comparisons and we discuss consistency of the data. 
The following section investigates methods of deriving the final fuzzy weights for 
the issues and discusses a procedure for ranking the alternatives given their fuzzy 
weights. The fourth section presents various properties of fuzzy hierarchical 
analysis. The following section extends the technique to the situation where input 
from many experts is desired. The relationship of this paper to previous research 
[13, 141 is discussed in the sixth section. Two examples are worked out in the 
following section and the last section contains a summary and our conclusions. 

2. Fuzzy ratios and consistency 

The type of fuzzy numbers used (see [2]) by the experts in paired comparisons 
is described by (a/P, $8) where 0 < CY c p s y d S. The graph of the membership 
function p is determined by these four numbers as follows: zero to the left of CY, a 
straight line segment from (a, 0) to (6, l), a horizontal line segment from (0, 1) to 
(y, l), a straight line segment from (7, 1) to (6, 0), and zero to the right of 6. From 
now on we will place a bar over a symbol if it represents fuzzy numbers. If an 
expert believes alternative Ai is more important than Ai, then the fuzzy ratio 
dii = (oir/pii, YiJGir) has OL, 0, y, 6 l {1,2, . . . ,9} and iiri is taken as (air)-’ = 
(&j’/r;‘, p;‘/a!;‘). For the reciprocal of a fuzzy number see [5], page 49. 

If two of the numbers [Y, 0, or 0, y, or y, 6 are equal in a fuzzy number liii, then 
the corresponding line segment does not exist. For example, (4/5,5/6) is a triangle 
over the interval [4,6] and (2/2,2/4) is a line segment from (2,l) to (4,O) and 
zero elsewhere. Any real numer n is equal to (n/n, n/n). Therefore, if a person 
feels that Ai and Ai are equally important, then iiii = (l/l, l/l). Let A be the 
m X m fuzzy matrix of all paired comparisons for the issues Ai, AZ, . . . , A,,,. The 
elements in A are iiir where iiri = (Gi)-l and liii = (l/l, l/l) all i. A is called a 
fuzzy positive reciprocal matrix. 

The fuzzy numbers are intuitively easy to use and have various interpretations 
which would be explained to a person before they would be asked to suply the 
fuzzy positive reciprocal matrices A. For example, approximately 5 to 1 might be 
(4/5,5/6) and between 6 to 1 and 8 to 1 could be (6/6,8/8) or (5/6,8/g). Also, 
one mght interpret (3/3,3/5) as being at least 3 to 1. 

We now need to introduce a method of comparing fuzzy numbers that will be 
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used in the definition of consistency and in a later setion when we want to rank 
the alternatives from highest to lowest. Let &f and N be two fuzzy numbers with 
membership functions p,,,(x) and F,,(X), respectively. An arbitrary fuzzy number 
ti is also determined by the numbers (m,/mz, m$mJ but the graph of p,,,(x) 
need not be a straight line segment on [ml, m2] and [Q, m4]. The membership 
function p(x) is continuous monotonically increasing from zero to one on 
[ml, ma] and continuous monotonically decreasing from one to zero on [m3, ma]. 
Define 

u(tii fiJ> = suP(mW,(x), P,,(Y))). x>y 

We will say that n;i is greater than N, written fi> &, if v(&fa fi) = 1 and 
v(N2 6f) < 8, where 8 is some fixed positive fraction less than or equal to one [4; 
5, p. 59-601. Values like 0.7, 0.8, 0.9 might be appropriate for 8. If &f is not 
greater than fi and fi is not greater than a, we will say 6f and fi are 
approximately equal which is written as fi= &/. Therefore, if 

then &f = 6J. We will write a> R, when &f > N or &f = &. We will also need to 
add and multiply fuzzy numbers. Let $ and 0 be the standard fuzzy addition and 
multiplication, respectively [3; 4; 5, Chapter 31. 

Definition 1. A fuzzy positive reciprocal matrix A = [iiii] is consistent if and only 
if iiik 0 dkj Z ~ij. 

This definition is the direct extension to fuzzy positive reciprocal matrices of the 
definition of (ordinal) consistency for positive reciprocal matrices [7, 91. If 
A = [aij] is a positive reciprocal matrix, then A is consistent if and only if 
ai@kj = Qiim 

Much of fuzzy hierarchical analysis will reduce to Saaty’s hierarchial analysis if 
all the fuzzy numbers are triangular (pij = nj) and 8 = 1. A is consistent if and 
only if fiikekj = pii when pii = ‘yii and 8 = 1. If some flat fuzzy numbers are 
employed (pii < nj) and/or 8 < 1, then fuzzy hierarchical analysis is an extension 
of classical hierarchical analysis. 

If a fuzzy positive reciprocal matrix is not consistent we may wish to revise the 
estimates of the ratios so that the estimates of the fuzzy weights may be improved. 
Saaty [7] states: 

Note that improving consistency does not mean getting an answer closer to 
the ‘real’ life solution. It only means that the ratio estimates in the matrix, as 
a sample collection, are closer to being logically related than to being 
randomly chosen. 

Theorem 1. Let A = [iiij] where qi = (aij/@ij, rij/sij) and let pii 6 qi d yii for all i, j. 
If A = [qi] is consistent, then A is consistent. 

Proof. We first determine &kOckj (see [l]). The graph of the membership 
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fuwtion for this fuzzy number is zero to the left of wti monotonically increases 
from &al, 0) to (&J& 1) on the interval [wkj, &&I, is a horizontal line 
segment between (B&, 1) and (yayti l), monotonically decreases from (y&ye 1) 
to &&, 0) on the interval [y*y@ && ], and is zero to the right of G&.+ The 
increasing and decreasing parts are not straight line segments (see [ 11). If two of 
the numbers wti/3JgW or /3&+ yikyti or yityki, S&, are equal, then that part 
of the graph does not exist. 

Since && =s hati = a, =s yityti with & S a, S yib we see that 

14&O&2&)= 1 and o(ii,~=&Oti,)= 1. 

Therefore, &Qh - G and A is consistent- 

The converse of Theorem 1 is not necessarily true because the intervals where 
the membership function for Gi and & OE, is equal to one may be disjoint when 
8 < 1. Even if B = 1, the converse is not necessarily true. 

3. The f5xzizy weights 

In Saaty’s hierarchical analysis one first computes the weights wi (wi >O, 
w,+- - - + w, = 1) for each positive reciprocal matrix A Then these weights are 
combined, depending on the hierarchical s truchue, to obtain the 6na.l set of 
weights for the alternatives. Therefore, we must first specify how to obtain the 
fuzzy weights I& given any fuzzy positive reciprocal matrix A. 

We will begin with Saaty’s A-max procedure for determining the weights and 
show that it is not readily extended to fuzzy matrices. For a given A, A-max is the 
largest (real) eigenvalue of A and the weights wi are the components of the 
normalized (sum equals one) eigenvector corresponding to A-max. Now consider 
a fuzzy positive reciprocal matrix ii = [%] where & = kzJ&, yd6,). Generalizing 
the A-max method we would consider 

where ET= (ti,, _ _ _, it,) and the @i and 1 are funy numbers. The above 
equation defines the following m equations 

The fuzzy numbers tii are determined by (tzJ&, s,le, j where the graph of the 
membership function fi is zero to the left of G continuous and monotonically 
increasing from (eti 0) to (& l), a horizontal line segment from (& 1) to (a, l), 
a~ntinuous and monotonically decreasing from (qi, 1) to (6, O), and zero to the 
right of ei- Similarly, the fuzzy number h is determined by (AI/h,, x,/A,). 

Let A=[%], B=[&], C=[yu] and D=[6,]. Also, let X’=k ,,..-, E,,J~, 
X2=(& ,..., tjT,X3=(tllr--.,t),jT,~dX4=(e1 ,---, B,,,)T.Theabovesystem 
of equations implies that Ax’ = A ,X’, BX2 = A2X2, CX3 = AJr3, DX4 = &X4. In 
each of these equations let &-max be the largest (real) eigenvalue and v’ the 
associated normalized eigenvector. Therefore, V’ would contain the values of the 
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Ed V2 has the values of the &, etc. Since the components of each v’ sum to one 
we cannot have pi < & s Q < 0, for all i Since the nonnaked eigenvectors cannot 
be used to detine i+, the question is: “what eigenvector should be used?” There 
appears to be no reason to choose one eigenvector over another so we conclude 
that this method cannot be employed to defme the largest fuzzy eigenvalue and a 
corresponding fuzzy eigenvector of weights. One might next consider A OG = 
iOii, but we shall not pursue this direction in this paper. 

The geometric mean technique [l, 11, 121 for computing the weights Wi is 
easily extended to fuzzy positive reciprocal matrices ;i Given a positive reciprocal 
matrix A =[a,j], first compute the geometric mean of each row as 

and then wi = rij(rr + - - - + r,,,). If A is consistent, then the geometric mean method 
always produces the same weights as Saaty’s A-max technique and if m = 3, both 
methods compute the same weights [lo]. It appears [ll, 121 that when m >3 the 
numerical results for the weights in the two procedures are close to each other. 

Other methods have been proposed for estimating de true weights from a 
given positve reciprocal matrix. It is not our intention to get involved in the 
debate over which procedure is best. We wish to choose that method which 
extends easily to fuzzy positive reciprocal matrices and possesses a number of 
desirable properties- We believe it is the log least squares method that results in 
the geometric mean procedure. 

For A = I~jiii] define 

ri = (4.0. - - O&J1lrn and Gi = iiO(rl@- - -@fm)-‘- 

Roots of fuzzy numbers are discussed in [5], page 53. In the remainder of this 
paper we will employ this technique for computing the fuzzy weights i$. 

Based on [2] we will determine the membership function h for i@. Let 

for O~ysl. Define q=[ncl ~ii]l’~ and a = Czl CQ. Similarly, define pi and 0. 
yi and y, Si and 6. Finally, let 

The fuzzy weighs 13~ are determined by (a$-‘1&y-‘, y&3-‘I&-‘) where tbe 
graph of pi is zero to the left of q&j-l, x = fi~y)jg(y) on the interval [%a-‘, &y-l]* 
a horizontal line from &y-‘, 1) to (yJ3-‘, l), x= gj(y)/f(y) on the interval 
[y@-I, &x-l], and zero to the right of &a -‘- We have assumed the r-axis is 
horizontal and the y-axis is vertical so the graph of x =fi(y)lg(y) starts at 
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((U$-l, 0) for y = 0 and monotonically increases to @J-y-‘, 1) as y grows from 0 to 
1. One might wish to multiply each Ci by a normalizing constant so that the 
support of the Gi (where j.~~(x)>O) lies in the interval [0, 11. 

‘Theorem 2 (Preservation of ordinal consistency [7J). Suppose qi > dki for j = 
1 ,---9 m. Then Gi Z Gk. 

Proof. If pi =(&i/Sir nJ@i), then the result follows from ni > &. NOW 

and & = (fi &)““‘/Y. 
j=l 

We have l//3 B l/r because 6 3 y. The inequality &i > liki all j implies Fiji > yki all j, 
which implies yii > oki all j. It fOuOWS that ni 2 & and 8i 3 wk. 

The procedure outlined above determines the fuzzy weights for any fuzzy 
positive reciprocal matrix A. To obtain the final fuzzy weights, and the final 
ranking of the issues, we need to consider a specific hierarchy. To illustrate our 
method consider the structure in Figure 1. For each criterion ck (aspect, 
characteristic, . . .) we obtain a fuzzy positive reciprocal matrix Ak of pairwise 
comparisons. We also obtain a fuzzy positive reciprocal matrix B for the pair-wise 
comparison of the criteria. Fuzzy weights iik = (iii,, . . . , $,,,k) are computed for 
each & and fuzzy weights e = (Cl,. . . , &) are derived from J?. The final fuzzy 
weight for issue Ai is 

The membership functions for the fi are easily found from the membership 

Criterion Criterion .sL 52 Cl cz 

A, A*. . . A,,, 

Alternatives 

A, A2 . . . A,,, 

Alternatives 

Fig. 1. Hierarchical structure. 

Overall 
Objective 

A, A2 . . . A,,, 

Alternatives 
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functions for the Giik and Zt. Again, one might multiply each & by a suitable 
constant so that all the fi have their support in [0, 11. 

Definition 2. Alternative Ai dominates issue Ai, written Ai > Ar, if and only if 
fi > 6. If Ai does not dominate Ai and Ai does not dominate Ai, we write Ai = Ai. 

Define the sets HI, Hz,. . . as follows. H, contains all the undominated issues. 
I-I2 has all the undominated alternatives after deleting all the Ai in Hr. Similarly, 
we define H3, H4,. . . with the last non-empty set called Hd. Clearly, H, # 8, and 
as long as HI does not contain all the alternatives, H2 is non-empty, etc. All the 
issues in an Hi are at the same level in the ranking. All the A, in H, have the 
highest ranking, the issues in H2 are all at the second highest level, etc. The f&l 
ranking of the AI, AZ,. . . , A,,, is accomplished by the sets H,, Hz, . . . , Hd. 

4. Properties of fnxzy hierarchical analysis 

We write Ai 2 Ai if Ai > Aj or Ai = AP The following properties of >, 3, and 
= are easily verified and so the proofs are omitted [2]. 

(a) > is transitive, = is not transitive. 
(b) Given any two issues Ai and A, then one of the following holds: Ai > A, or 

Ai z A, or Aj > Ai. 
(c) If Ai and Aj belong to Hk, then Ai -Aj. 
(d) Given any Ai E Hk, k > 1, there is an Ai E Hkml SO that Ai > Ai. 
(e) 2 is transitive, anti-symmetric, and reflexive (a partial order). 
(f) If Ai E Hk, then Ai 3 Ai for all Aj E HI, 1~ k. 
(g) a is a total order (partial order plus (b) above). 
We next observe that fuzzy hierarchical analysis ‘contains’ standard hierarchical 

analysis when the geometric mean procedure is employed to calculate the weights. 
As before, & = [ii:], 6$= (cy$@$, -y&3$, are the fuzzy positive reciprocal mat- 
rices for the criteria C,, k = 1,2, . . . , K, and E =[&r], Q = (mir/Rj, oir/Trr), is the 
pairwise comparison matrix for the criteria. Let ai~[pi, $1 for all i, j, k and let 
bij E [Pii, oij] for all t, j. FOITII the matrices I& = [ai] and M= [bir]. Use the 
geometric mean method to find the weights for the matrices Mk and M and then 
combine them in the usual way to obtain the final weights 4 for the alternatives. If 
fi = (&/xi, r,+/wi) are the fuzzy weights obtained from the Ak and I?, then it is not 
difhcult to see that fi c [xi, I,$] for all i. That is, the (non-fuzzy) weights fi belong to 
the interval where the membership function for fi equals one. 

Suppose in a pairwise comparison of the issues Al, . . . , A,,, the ‘true’ weights 
are w?, w:, . . . , wz, where wi>O and w:+* -*+w~=l.Ifanexpertknewthe 
w:, then all the aii in the pairwise comparison matrix A would equal w$/wt and 
A would be consistent. In practice, the Gj used are considered estimates of 
w:/wT since the true weights are usually not kown. 

Theorem 3. Let A = [Gj], Gj = (cYij/Pij, rij/Sij) Und suppose W:/WT E [Pij* rij] for Uil 
i, j. Then A is consistent Cld WTE[& T/i] f Or all i where pi = (&i/Si, ?jJ@). 
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Proof. The fact that A is consistent follows from Theorem 1. Let M = [ wT/wT]. It 
follows from the discussion above that the weights Wi obtained from M via the 
geometric mean procedure belong to the corresponding interval [Q, vi]. But 
Wi = rT/(rT + ’ - * + rf), where 

[ 

m 

I 

11111 

rY= n (wT/wT) , 
j-1 

It follows that wT = Wi because the sum of the WY is one. 

Theorem 2 states that if the true ratios belong to the intervals where the 
membership function for dij is one, then the true weights belong to the intervals 
where the membership functions for pi equals one. 

It is of interest to speculate when all the fuzzy weights will be the same. 
Suppose an expert believes that A, is more important than AZ, A2 is more 
important than AX,. . . , and A,,, is more important than A,. The expert’s 
preferences are not transitive and the fuzzy weights pi will depend on the other 
comparisons between Ai and A3, A2 and A4, etc. When there are only three 
issues we now show the fuzzy weights must all be equal. This situation is 
sometimes called the voter’s paradox, or Arrow’s paradox. The proof of the 
following theorem is straightforward and hence omitted. 

Theorem 4. Suppose m = 3 and E12= c&= Gi3,. Then ql = iC2= i& 

5. Multiple experts 

Multiple experts are now employed in the hierarchical analysis in order to rank 
the alternatives. Other authors [l, 121 have used the geometric mean to aggre- 
gate, or pool, all the data across the experts before computing the weights from 
the ‘average’ matrix. 

Suppose the experts (judges, . . .) are called Jr,. . . , J,,. Each judge JI supplies a 
fuzzy positive reciprocal matrix A,, for each criterion C, in the hierarchy, and J, 
also produces a matrix B[ of paired comparisons between the criteria. Let 
& = [cy] and Er = [gt]* The average fuzzy positive reciprocal matrices & = [di] 
and B = [Zir] are determined as follows: 

a;= (g;lo. * .qy’“, Eij = (a@ . .,,;y. 

It may be checked that (ii:)-‘= iii and (Zij)-’ = zji. 

Theorem 5. If &I, . . . , &,, are consistent, then & is consistent, 

Proof. The-proof follows from the following three lemmas. ti, N, ij, d are fuzzy 
numbers. M is determined by (m,/mz, m3/m4) for OC ml< ma< m3G m4. The 
graph of the membership function k,,,(x) for &f is continuous and monotonically 
increasing on [ml, mz] and continuous and monotonically decreasing on [ m3, ma]. 
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The other fuzzy numbers 6/, p, d are defined the same way and are determined by 
(nlln2, n3/n4), (p11p2, P$PJ, (q1/q2, q31q4), respectively. 

Lemma 1. (tiO~)““O(POB)“s = [(IGfO~)O(BO~)]“s, s = 2,3,4, . . . . 

Proof. The fuzzy number on the left side of the equation is determined by 

((mlnl)1’s(Plql)1’sl(m2~*)1’s(PZq2)1’s, (~3~3)1’s(P3q3)1’Sl(m4~4)1’s(P3q3)”b). 

The fuzzy number on the right of the equality is determined by 

((~lnlplql)“sl(m2n2P292~1’s, (m3n3p3q3)““l(m4n4p,q4)1’s). 

Therefore, these two expressions are equal. One may also check that the 
increasing and decreasing parts of the graphs are also equal. 

Proof. The proof is easy if 0 = 1 because then [mz, m3]n[p2, p3] # P, and 
[ n2, n3] fl [q,, q3] # @. So assume that 8 < 1. We may also assume that m,n,< p2q2 
or p3q3 < m2n2 for otherwise [ m2n2, m3n3] n [ p2q2, p3q3J # P, and $fOlv= Fob. 
Both arguments are the same so consider m3n3< p2q2. Let blE [pl, p2] and 
ble[ql, q2] so that Fp(bl) = 6 and pq(bJ= 8. Also let al~[r3, m_,,] and a2c 
[n3, no] so that ~,,,(a~) = 8 and ~,,(a~)= 8. Now b,<al because M=P and b2<a2 
since fi= 6. Hence, blb2 <ala2. If 3 = 6fO& and T=POb then pL,(ulaJ= 8 
and pt(blb2) = 8. Since blb2<a,a2 the graph of p*(x) on [plql, p2q2] must 
intersect the graph of p,(x) on [ m3n3, m4n4] at a y-coordinate above 8. Hence 
AaN-Fob. 

Lemma 3. If ti- p, then ti”’ = p”‘, s = 2, 3, . . . . 

Proof. Assume 8 < 1 and m3<p2. Let the graph of p,(x) on [ m3, m,J intersect 
the graph of F,,(X) on [pl, p2] at x = _xO and k”,(xJ = pp(xO) = A L 8. Then the 
graph of the membership function for M1ls on [mi’s, mi’s] intersects the graph of 
the membership function for PI” on [p:‘“, pi’“] at x;” with the common value 
A Z= 8. Therefore, I\;j”’ = p”‘. The argument for p3< m2 is similar. If 
[ m2, m3] rl[ p2, p3] # fl, then it readily follows that fi1’s = P1”. 

Now we return to the proof of Theorem 5. We show ii;Oiii-~Zf;. First using 
Lemma 1 we may rewrite the product as 

[(~!$g~y)Q. . .~(~~~~~)]l’” 

because fuzzy multiplication is associative ([4], p. 45). Next we use Lemma 2 to 
obtain 

(g$Q$;‘)o. * .~(~~~~p) ir tip. . .0&y. 

The result follows from Lemma 3. 
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6. Previous research 

In a recent paper van Laarhoven and Pedrycz [ 131 extend Saaty’s hierarchical 
analysis to fuzzy hierarchical analysis also using fuzzy numbers. They used 
Lootsma’s [6] results on log least squares to extend Saaty’s hierarchical analysis to 
the case of multiple estimates for the ratios and to the situation of missing data 
(no estimates for certain ratios). 

For each ratio wT/wT, i < j, assume that we have rzij estimates aijk, k = 
1,2,. . . ) nij, where some of the nij could be zero (missing data case). The log least 
squares estimate of the true weights wf is a normalized solution Gi to 

min(isi k$l b aijk -MwJw,))z). 

When n, = 1, for i < j, the solution Gi is just the normalized geometric row mean 
discussed earlier. If nij = rr, i < j, which is the multiple expert case discussed above, 
it can be shown that the solution pi is the one indicated in Section 5. That is, one 
first obtains the geometric average across all the judges to obtain the ‘average’ 
positive reciprocal matrix and then computes the normalized geometric row 
means. 

Van Laarhoven and Pedrycz assume the aii, are triangular fuzzy numbers and 
solve the normal equations for triangular fuzzy numbers Wi which are the fuzzy 
estimates of the true weights. Our method is to substitute the fuzzy ratio 6,, into 
the solution of the normal equations. The solution to the normal equations is of 
the form 

9i = F(a,,), 

for some function F which depends on the nij. Our method is simply 

The paper by van Laarhoven and Pkdrycz is subject to two main criticisms. 
First, there are situations where the normal equations do not have a unique 
solution for the triangular fuzzy numbers 9i. We saw a similar situation when we 
attempted to employ Saaty’s A-max method to generate the fuzzy weights. 
Algebraic equations with fuzzy variables sometimes do not yield unique solutions. 
Secondly, they insist on obtaining triangular fuzzy numbers for their weights. Since 
algebraic operations on triangular fuzzy numbers do not necessarily produce a 
triangular fuzzy number, they are forced to employ approximate methods to 
preserve the shape of the fuzzy number. 

Our method does not suffer from either of these problems and it always 
produces a unique fuzzy number for the weight. It is equally applicable to the 
cases of missing data and multiple estimates. 

In a related paper [14] Wagenknecht and Hartmann also extend a method of 
estimating weights from a positive reciprocal matrix to fuzzy matrices. They are 
not attempting to develop fuzzy hierarchical analysis but instead they wish to use 
their results to choose a best solution from a set of efficient (undominated) 
solutions to a multicriteria decision problem. They consider two methods for 
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determining the fuzzy weights. First they use least squares to estimate the best 
fuzzy weights tii which approximate Gii in the sense that 

ii, = KJJii$. 

Their fuzzy weights are (L, R)-fuzzy numbers [3; 4; 5, p. 531. This procedure has 
two drawbacks: (1) they use an approximate expression for Wi/Gi ; and (2) the least 
squares solution involves solving a nonlinear optimization problem with many 
variables. Their second method is similar to ours. The fuzzy weights are defined 
using the geometric mean but their fuzzy numbers Zii are different. Since their 
fuzzy numbers are more complicated than ours they end up with a rather involved 
computation in order to obtain Wi. We believe that our type of fuzzy number is 
more easily understood and used by experts (decision makers) and it is more easily 
manipulated mathematically to obtain the fuzzy weights. 

7. Applications 

In any application the value of 8, the number used in comparing fuzzy numbers, 
must be decided on first. There is no set rule which dictates the value of 8 and we 
have suggested values like 0.7, 0.8, 0.9. A 8 value of one implies that fuzzy 
number 6f= (ml/mz, Q/Q) is greater than another fuzzy number N= 
(nl/nz, n3/n4) if and only if n3<m *. The ordering of fuzzy numbers is accom- 
plished by comparing the intervals where their membership functions equal one 
when 8 = 1. In the following examples we have set 8 = 0.8. Notice that as 8 
increases from 0.7 to 0.8 to 0.9 fuzzy numbers become more spread out. That is, 
we may have &f= fi for 13 = 0.7 but &f> fi for 8 = 0.8. 

Assume 8< 1 and consider comparing two fuzzy numbers fi and fi when 
na< m2. Then &f > &r if and only if 

max(min(h(x), 11~b))) < 4 

where CL,,, (CL,,) are the membership functions for ti (N). ti is greater than N if 
the intersection of the graphs of CL,,, and g,, on [n,, m2] lies below the horizontal 
line y = 8. If this intersection lies on y = 8 or above, then &f - 6J. When 
[ n2, n3] n [ m2, m3] is nonempty we have fi- fi also. 

Example 1. A government agency wishes to rank chemicals Al, AZ, A, from 
most harmful to least harmful to the environment. The hierarchy is shown in 
Figure 1 with criterion C1 = aquatic life, C2 = agriculture and C3 = timber. In a 
real study there would be more than three chemicals and possibly four or five 
criteria. The agency employs the testimony of a group of experts who supply the 
fuzzy positive reciprocal matrices ii,, for each criterion C,. The agency also 
collects data on the pairwise comparisons of the criteria to obtain the fuzzy 
positive reciprocal matrices l?, for the criteria. Suppose the pooled information is 
given in Table 1. Each fuzzy positive reciprocal matrix is consistent. 

Consider the fuzzy positive reciprocal matrix for criterion C3 in Table 1. The 
fuzzy ratios have the following interpretations: (1) (l/2,2/3) means that chemical 
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Table 1 

Criterion Fuzzy positive reciprocal matrix for criterion C, in Example 1 

c, A, 
A, (1,4&,3/1/2) (1,211,~~,2/1/23 
-42 (2/A/43 
4 cm, x9 W2/lf2,1/1) 

(l/l, 2/a 
1 1 

c2 A, 
w2/73 

4 
Al 

W7/1/611/6/116~ 
(2/2,4/4) 

A2 u/2/1/2, l/l) 
A3 u/4/1/4: l/2/112) W1.1212~ 1 1 

G Al 
A, 

U/3/1,: 1/2/l) 
W&3) U/&3) 

A2 (3/3,4/4) 
A3 (l/8/1/8, ;/8/l/7) W411/4f1/3/1/3~ 1 1 

C, 
Cl W/lK:kl,s, W&1/2/1~ 
c2 dm 
C3 (1/2,2/3 W3ilnf1/3/1/3~ 

(3/3,3/3) 
1 1 

Ai is approximately twice as harmful to timber as chemical A*; (2) (7/8,8/g) 
means that Ai is at most eight times as harmful as A,; and (3) (3/3,4/4) means 
AZ is between 3 to 4 times as harmful as A3. 

It is cot difficult to program a personal computer to determine the final fuzzy 
weight fi and using graphics have their membership functions displayed on one 
coordinate system. The membership functions for the final fuzzy weights are 

Fig. 2. Membership functions for the final fuzzy weights in Example 1. 
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shown in Figure 2. Therefore, chemical Ai is the most harmful, and chemicals Az 
and A3 are approximately equally harmful. That is, Hi = {A,} and II2 = {AZ, AS}. 

Example 2. A government wishes to rank various energy sources from most 
important to least important for the nation over the next ten years. The alterna- 
tives are A, = nuclear, A2 = hydroelectric, A3 = fossil, and A4 = solar. The 
hierarchical structure is the same as in Figure 1. There are two criteria in the 
study. Cr represents economical and political considerations including cost, bal- 
ance of payments, etc. The other criterion CZ represents military and defense 
considerations including self sufficiency, availability, etc. Expert opinion is sol- 
icited from energy experts, government officials, military personnel,. . . and the 
pooled data is presented in Table 2. Each fuzzy matrix is consistent. 

Table 2 

Criterion Fuzzy positive reciprocal matrix for criterion C, in Example 2 

c, A, A2 
A, 

(5,6:6/73 
(W/W% l/6/1/5) W6/1/~h1,4~ 

A2 (l/l, 212) (414.616) 
A3 (4/S, 516) w2/1:2 l/l) (3/4,5/6) 
A.4 (l/l, l/l) (l/6/1/6, G4/1/4) (l/6/1,5:1,4/1,3) 1 1 

C2 A, A2 
A, 

(3,3f5,51 
W/115,1/3/1/3) W6/1,6A;,6/1,5, (l/2/1,$,2/3,2) 

A2 (1/2/1;2,1/1) (6/6,6/7) 

A3 (5/6,6/6) d2/2) W9.919) 
A4 (2/3/2/3,212) (l/7/1/6: l/6/1/6) W9/1/9f1/9/1/8~ 1 1 

c, 
C, C 

1 (l/%3, 
C* W3/1/2,1/2/1) 1 1 

The final fuzzy weights Ti for the alternatives Ai are shown in Figure 3. It is 
clear from Figure 3 that Hi = {A*, AJ and I-& = {A,, A4}. This study has ranked 
hydroelectric and fossil fuel highest and approximately equally important. If it is 
desired to have Hi contain only one alternative, then a second study comparing 
only A2 and A3 would be needed in order to try to differentiate between these 
two energy sources. 

8. Summary and conclusions 

This paper investigates the possibility of allowing participants in a hierarchical 
analysis to give vague, or imprecise, replys when comparing two alteratives. If a 
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1 

9 = 0.8 

Fig. 3. Membership functions for the final fuzzy weights in Example 2. 

person is comparing two alternatives A and B as to their relative importance (or 
weight, or brightness, etc.) and believes A is more important than B, then he/she 
may respond by saying A is approximately twice as important as B, or A is 
between 3 to 5 times as important as B, etc. Fuzzy numbers are used to capture 
the vagueness of these statements. Saaty’s hierarchical analysis is generalized 
where fuzzy numbers are employed in place of exact ratios. 

Much of classical hierarchical analysis may be accomplished with fuzzy num- 
bers. This paper shows that the concept of consistency generalizes to fuzzy 
matrices. Saaty’s A-max method for determining the weights from a positive 
reciprocal matrix does not readily extend to fuzzy matrices. More research is 
needed on fuzzy eigenvalues and vectors of fuzzy positive reciprocal matrices. The 
geometric mean procedure is easily applied to a fuzzy matrix to obtain the fuzzy 
weights. The fuzzy weights are then combined in the usual way, depending on the 
hierarchical structure, to calculate the final fuzzy weights for the alternatives. The 
final fuzzy weights are utilized in partitioning the issues into sets Hi, HZ,. . . . The 
set Hi contains all the highest ranked alternatives, H2 has those ranked second, 
etc. All the issues in Hr are undominated and judged approximately equal. All 
the alternatives in I-&, k > 1, are approximately equal and are dominated by some 
issue in the next highest ranking E&-i. Fuzzy hierarchical analysis is shown to 
possess a number of other desirable properties. The techniques readily extend to 
the situation where multiple experts are employed in the ranking process, or to 
the case of missing data. 

If there are not too many alternatives and criteria fuzzy hierarchical analysis is 
easily programmed on a personal computer which could show graphically the 
membership functions for the final fuzzy weights. Then one could immediately 
pick off from the display of these membership functions the ranking I-Zr, HZ,. . . . 
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