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Abstract

We present a new method of ®nding the fuzzy weights in fuzzy hierarchical analysis which is the direct fuzzi®cation

of the original method used by Saaty in the analytic hierarchy process. We test our new procedure in two cases where

there are formulas for the crisp weights. An example is presented where there are ®ve criteria and three alterna-

tives. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this section we ®rst brie¯y review the contents of the paper, present our notation, and review the
literature on fuzzy hierarchical analysis (FHA). In the next section we review the computational details of
®nding the weights in the original analytical hierarchical process. We fuzzify hierarchical analysis (HA) in
the third section by allowing fuzzy numbers for the pairwise comparisons. Direct computation of fuzzy
eigenvalues and fuzzy eigenvectors (the fuzzy weights) from a fuzzy, positive, reciprocal matrix is very
complicated so instead we fuzzify an equivalent method to get the fuzzy weights. The new procedure is also
quite involved so we design an evolutionary algorithm to estimate the fuzzy weights. To test our new
method we compare the results to those obtained from 3� 3 and 4� 4 fuzzy, positive, reciprocal matrices,
because for the 3� 3 and 4� 4 case there are formulas for the crisp weights. All this comprises the third
section.
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The fourth section contains an example having ®ve criteria and three alternatives. Also in this section we
discuss consistency of fuzzy, positive, reciprocal matrices and how to obtain the ®nal ranking based on
fuzzy weights. The ®fth section gives the results in the example and the ®nal section contains our con-
clusions and suggestions for future research.

We place a ``bar'' over a letter to denote a fuzzy set. All our fuzzy sets will be fuzzy subsets of the real
numbers. So, aij, wij, b, c; . . . are all fuzzy subsets of R. If a is a fuzzy set, then a�x� is the value of the
membership function at x 2 R. An a-cut of a, written a�a�, is de®ned as fxja�x�P ag for 0 < a6 1. The
support of a, written a�0�, is the closure of the union of a�a�, 0 < a6 1.

A trapezoidal fuzzy number N is de®ned by four numbers a6 b6 c6 d. Assuming a < b < c < d, the
graph of y � N�x� is a trapezoid with base on the interval �a; d� and N�x� � 1 for b6 x6 c. We get a tri-
angular fuzzy number if b � c. We write N as �a=b; c=d�. Special cases, when a � b or c � d, etc. are all
shown in Fig. 2.

In FHA one uses fuzzy numbers for the pairwise comparisons and the main problem is to compute the
corresponding fuzzy weights. The direct approach, of ®nding fuzzy eigenvalues and fuzzy eigenvectors, is
too computationally di�cult [12,13,15,20], except for [24] to be discussed below, so researchers fuzzi®ed
another method. However, all these methods, except [24] and this paper, deviate from the original pro-
cedure used by Saaty in HA for ®nding the weights.

In [29] the authors, using the results in [30] on log least squares, extended HA to FHA. They used
logarithmic regression to estimate the fuzzy weights (see also [31]). In their model they can have multiple
estimates for each pairwise comparison and they can handle the problem of missing data (no estimates
for certain comparisons). However, as pointed out in an example in [27] the logarithmic least square
method can produce di�erent weights, than Saaty's original procedure, for crisp data. In [11] the authors
pointed out an error in [29] and they showed how to correct the procedure. However, in [25] it is shown
that this method can produce fuzzy weights w � �w1=w2;w2=w3�, triangular fuzzy numbers, with w3 < w1.
That is, it is not a fuzzy number. This paper presents su�cient conditions so that you will get w1 < w3 for
the triangular fuzzy number weights. This paper was followed by [26] where they de®ne the concept of
strong transitivity of a fuzzy, positive, reciprocal matrix (Section 3) and show that if this condition is
satis®ed, the log least squares method of Laarkoven and Pedrycz [29] produces triangular fuzzy weights
with w1 < w3.

The logarithmic least squares method of obtaining fuzzy weights has been carried on in other papers. In
[28] the authors present another solution to the problem using a generalized pseudoinverse approach but
also points out you can get w3 < w1. The paper [37] uses ``step-form'' fuzzy numbers in logarithmic least
squares to estimate these fuzzy weights, but they use a di�erent objective function to be minimized in
logarithmic regression.

There are also other papers in FHA using di�erent procedures to compute fuzzy weights. In [36] they
employed ``step-form'' fuzzy numbers and fuzzi®ed another procedure, which they claim is the same as
Saaty's original method for crisp perfectly consistent, positive, reciprocal matrices, to calculate the fuzzy
weights. However, the matrices are usually not perfectly consistent, only ``reasonably'' consistent, so this
procedure will produce di�erent weights than Saaty's original method, for crisp data. The paper [34] uses
fuzzy relational equations to model FHA problem. The modeling in [34] gives a fuzzy hierarchical process
quite di�erent from Saaty's original HA. The author in [44] develops a method for the interactive analysis
of fuzzy pairwise comparisons in hierarchical weighting models which appears to us far removed from
Saaty's original HA.

The series of papers [21±23,35] are also related to FHA. In [22,23,35], they changed a fuzzy, positive,
reciprocal matrix into a crisp matrix, using a-cuts and convex combinations, and then computed the ei-
genvector (weight vector) from the crisp matrix. They do not obtain a fuzzy weight vector. Paper [21] is
about speeding up the calculations in [35]. In our opinion, these papers are not about FHA since there are
no fuzzy weights.
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Paper [24] is in the spirit of Saaty's original HA. They ®rst discuss a way of ®nding fuzzy kmax (Section 2),
where kmax is the largest, positive, eigenvalue of a fuzzy, positive, reciprocal matrix. However, where they
run into computational problems is in computing of the fuzzy eigenvector associated with kmax. We think it
is a mistake to ®rst compute fuzzy kmax since it is not used in FHA. What is needed are the fuzzy weights.

In [12,20] the author also presents a method of computing the fuzzy weights in FHA. He used the
fuzzi®cation of the geometric mean of each row. If the positive, reciprocal matrix is perfectly consistent,
then the geometric row mean procedure gives the same weights as the eigenvector method, which was
Saaty's original method. However, we do not expect perfect consistency, so the geometric row procedure
can give di�erent weights than the eigenvector method.

In this paper we directly fuzzify Saaty's original method of computing the weights and for this reason we
now believe we have the correct FHA. Since this paper follows [12,20] we have given it the title of FHA-
Revisited.

Recently there have been a number of papers criticizing the methods used by Saaty in HA. See the
papers [2±10,32,33,43,45], and the references in these papers, for a review of the literature. The criticisms
include: (1) one should use the geometric means of the rows of a positive reciprocal matrix to calculate the
weights and not the normalized eigenvector corresponding to kmax (Eq. (2), Section 2); (2) Saaty's measure
of consistency for a positive reciprocal matrix (Section 4.1) is incorrect; (3) the method of aggregating the
weights across the criteria (Eq. (3), Section 2) is not correct; and (4) Saaty's procedure can produce rank
reversals. The geometric mean method uses

wi �
Yn

j�1

aij

 !1=n

; �1�

16 i6 n, to get the weights if A � �aij� is a n� n positive reciprocal matrix. The papers [3±7,32,33] discuss
reasons for using geometric mean instead of Saaty's procedure.

Acceptance of alternate methods in HA has been slow, and many researchers continue using the tra-
ditional HA methods as outlined in Section 2. In this paper we have adopted Saaty's original procedure but
we have a companion paper [13,21] that bases FHA on the geometric mean method. So, this paper and
[13,21] cover the two basic ways of calculating fuzzy weights in FHA. Also, in [45] the authors recommend
fuzzifying the geometric mean procedure to obtain fuzzy weights in FHA.

2. Hierarchical analysis

In this section we review the basic computations needed to ®nd the weights in HA. In HA a person
(expert, judge) is asked to give ratios aij for each pairwise comparison between issues (alternatives, can-
didates) A1; . . . ;Am for each criterion (objective) in a hierarchy, and also between the criteria. For some
speci®c criterion Ck, if a person considers A1 more important than A5, then a15 might equal 3=1, or 5=1, or
7=1. The numbers for the ratios will be taken from the set S � f1; 2; 3; . . . ; 9g so a15 could be s1=s5 with s1,
s5 2 S and s1 > s5. The ratios aij indicate, for this expert, the strength with which Ai dominates Aj. If
a15 � 5=1 then a51 � 1=5. That is, aij � �aji�ÿ1

, all i, j, with aii � 1, 16 i6m. Let A be the m� m matrix
whose entries are the ratios �aji � aÿ1

ij �. A is called a positive reciprocal matrix. Since A is for criterion Ck

we will now write Ak for this matrix.
Assume there are K criteria C1; . . . ;CK with a positive reciprocal matrix Ak for each Ck, 16 k6K. Also,

the judge must give pairwise comparisons of the criteria producing a positive reciprocal matrix E. This
hierarchical structure is shown in Fig. 1. Examples, with actual fuzzy numbers in the Ak and E, are pre-
sented in Sections 3 and 4.
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Next one computes weights wT
k � �w1k; . . . ;wmk� for each Ak and eT � �e1; . . . ; eK� for E. Given any

positive reciprocal matrix A, let the eigenvalues, counting a root of multiplicity n n-times, be k1; . . . ; km.
There is a dominant (real, positive) eigenvalue, let us call it kmax, so that jkij < kmax for all ki 6� kmax. Also,
kmax is a root of multiplicity 1. Corresponding to kmax there is a unique eigenvector wT � �w1; . . . ;wm� so
that

Aw � kmaxw; �2�

where wi > 0 for all i and
Pm

i�1 wi � 1. This positive, normalized (sum one), vector w gives the weights for
A [38±42]. Then, wk is the positive, normalized, eigenvector corresponding to kmax for Ak, 16 k6K, and e
is the eigenvector for E.

The objective of HA is to rank the alternatives across all the criteria. Then, assuming that the reciprocal
matrices Ak, 16 k6K, and E are reasonably consistent [38±42], the ®nal ranking of the alternatives is
determined by the vector rT � �r1; . . . ; rm� where

rj �
XK

k�1

wjkek; �3�

16 j6m. We will discuss consistency for fuzzy hierarchical analysis in Section 4. The weight for alternative
Aj is rj, 16 j6m. The alternatives are ranked according to the numbers rj, 16 j6m. The hierarchical
structure (Fig. 1) can be expanded to more levels but we shall consider, in this paper, only the three levels
shown in Fig. 1.

The procedure described above does not easily extend to FHA discussed in the next section. In FHA we
have fuzzy numbers in the Ak and E. For each Ak and E we would need to ®nd kmax, now a fuzzy number,
and the corresponding (positive, normalized) vector of fuzzy numbers. The computations here are quite
involved [12,13,15,20], so instead we will employ another computational method of obtaining the weights.
This procedure will be extended to FHA in the next section.

Let 1T � �1; 1; . . . ; 1�, a vector of length m of all ones, let A be any positive reciprocal matrix with
sum�l� �sum of all the elements in Al, l � 1; 2; 3; . . . De®ne

lim
l!1

Al � 1
sum�l�

� �
� z; �4�

Fig. 1. Hierarchical structure.
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then if

w �
Xm

i�1

zi

 !ÿ1

z; �5�

we know that [38,40±42] w is the unique, positive, normalized eigenvector of A corresponding to kmax. This
gives us a way of computing the weights wk for Ak and e of E. We evaluate Eq. (4) for l � 2, l � 4 (square),
l � 8 (square again), . . . until the vector stabilizes (changes from step-to-step are less than a given e > 0).
Then, Eq. (5) produces the approximation to w.

3. Fuzzy hierarchical analysis

The experts are allowed to use fuzzy ratios in place of exact ratios. The aij, i 6� j, can now be fuzzy
numbers in any positive reciprocal matrix. As before, aii � 1 all i. The types of fuzzy numbers that can be
used in paired comparisons are described by aij � �a=b; c=d� where a, b, c, d 2 S, a6 b6 c6 d. There are
eight types of fuzzy numbers, with a real number represented by a � b � c � d, and the other seven are
shown in Fig. 2. The judge can input these fuzzy numbers various ways including drawing them or using
their verbal equivalents. For the trapezoidal (Fig. 2(a)) on could say approximately between b to 1 and c to
1. The triangle (Fig. 2(b)) is approximately b to 1. If aij � �a=b; c=d�, then aÿ1

ij � aji � �dÿ1=cÿ1; bÿ1=aÿ1�,
the reciprocal of the fuzzy number aij. The reciprocals are shown in Fig. 3.

The application domain of this paper is HA, according to Saaty, where the experts (judges) are allowed
to express uncertainty, using the fuzzy sets in Fig. 2, in their pairwise comparisons.

We will need a-cuts of all these fuzzy numbers in Figs. 2 and 3. It is obvious on how to take a-cuts of the
fuzzy numbers in Figs. 2(a),(b) and 3(a),(b). The procedure is simple for Figs. 2(c) and (d) so consider Fig.
2(c). The a-cut is �a; d� �cÿ d�a�, 06 a6 1. So, an a-cut of the fuzzy number in Fig. 3(c) is
��d� �cÿ d�a�ÿ1

; aÿ1�, 06 a6 1. For Fig. 2(e) all a-cuts are �a; d�. In Fig. 2(g), an a-cut is �a� �bÿ a�a; d�
and its reciprocal gives an a-cut for Fig. 3(g).

Now we assume the elements in the fuzzy positive reciprocal matrices Ak and E are aij � �a=b; c=d�,
aii � 1 and aji � aÿ1

ij . Some of the aij can be real numbers aij � �a=a; a=a�. We now describe how we are
going to compute the fuzzy weight vectors wk and e. There are a number of other issues to be addressed in
FHA, like consistency, and how do we obtain the ®nal ranking because now the weight rj (Eq. (3)) for
alternative Aj will be a fuzzy number. These two issues will be considered in Section 4. Right now we are
only concerned with ®nding the fuzzy weight vector for a fuzzy, positive, reciprocal matrix.

We compute the fuzzy weight vector by fuzzifying Eqs. (4) and (5). Let A be a fuzzy positive, reciprocal
matrix. Choose a 2 �0; 1�. Let C�a� �Qfaij�a� j 16 i < j6mg and v 2 C�a� we write as v � �a12; . . . ;
a1m; a23; . . . ; amÿ1;m�. De®ne positive, reciprocal, matrix A � �eij� as follows: (1) eij � aij if 16 i < j6m; (2)
eii � 1, 16 i6m; and (3) eji � aÿ1

ij for 16 i < j6m. Let

z � lim
l!1

Al � 1
sum�l�

� �
; �6�

and de®ne wv � �
Pm

i�1 zi�ÿ1z. Set wT
v � �wv1; . . . ;wvm�. We have described a continuous mapping Ui�v� � wvi,

16 i6m, for each a in �0; 1�. So, let [17]:

wi1�a� � minfwvi j v 2 C�a�g; �7�
wi2�a� � maxfwvi j v 2 C�a�g; �8�
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16 i6m, for all a 2 �0; 1�. Then, �wi1�a�;wi2�a�� becomes a-cuts of fuzzy numbers wi, 16 i6m, which
produce the fuzzy weight vector wT � �w1; . . . ;wm�.

It is no easy job to compute the wi1�a� and wi2�a�, so we propose an evolutionary algorithm (EA) to
do this job. The basic EA is described in Appendix A. Let us here brie¯y describe how the EA works to
®nd w.

Computing wi1�a� is a complicated, non-linear, optimization problem and EAs are very good search tools
for optimization. The search space is C�a�, so members of the population will be vectors v in C�a�. We will
estimate wi1�a� (wi2�a�) for selected values of a, say a � 0, 0.2, 0.4, 0.6, 0.8 and 1. Then, for each

Fig. 2. Fuzzy numbers in FHA: (a) trapezoidal, (b) triangle, (c) more than a to 1, (d) less than d to 1, (e) between a=1 and c=1, (f) at

least a=1, and (g) at most d=1.
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i � 1; 2; . . . ;m and each a � 0; 0:2; . . . ; 1 we run the EA to approximate the minimum of Ui�v� � wi1�a�.
Then, for each i � 1; 2; . . . ;m and each a � 0:0; 0:2; . . . ; 1:0 we apply the EA to approximate the maximum of
Ui�v� � wi2�a�. This produces approximations to �wi1�a�;wi2�a�� � wi�a� and the fuzzy weight vector w for A.

What we have done is fuzzify the original method of Saaty (Eqs. (4) and (5)) for ®nding the weights to
produce the fuzzy weights. We have used this procedure many times before [14±16,18,19] with success. The
general procedure is: (1) ®nd the crisp solution; (2) fuzzify the crisp solution; and (3) the fuzzi®ed crisp
solution gives the answer to the fuzzy problem.

In order to test our procedure we will consider two special cases of m � 3 and m � 4. When m � 3 and
m � 4 there are formulas for the unique positive, normalized, eigenvector corresponding to kmax.

Fig. 3. Reciprocals of fuzzy numbers in Fig. 2: (a) reciprocal of Fig. 2(a), (b) reciprocal of Fig. 2(b), (c) reciprocal of Fig. 2(c), (d)

reciprocal of Fig. 2(d), (e) reciprocal of Fig. 2(e), (f) reciprocal of Fig. 2(f), and (g) reciprocal of Fig. 2(g).
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3.1. m� 3

Let

A �
1 a b

aÿ1 1 c

bÿ1 cÿ1 1

264
375 �9�

be the positive, reciprocal, matrix. If wT � �w1;w2;w3� is the unique positive, normalized, eigenvector
corresponding to kmax, then we know that [40]:

w1 � a1=3b1=3

T
� f1�a; b; c�; �10�

w2 � aÿ1=3c1=3

T
� f2�a; b; c�; �11�

w3 � bÿ1=3cÿ1=3

T
� f3�a; b; c�; �12�

where

T � a1=3b1=3 � aÿ1=3c1=3 � bÿ1=3cÿ1=3: �13�

We now fuzzify w1, w2, w3 by substituting fuzzy numbers a for a, b for b, and c for c, and use the extension
principle to ®nd fuzzy weights w1, w2 and w3.

Let us look more closely on how we are to get w1, w2, w3. Since the fi are continuous we know that [17]:

wi1�a� � min fi�a; b; c� j a 2 a�a�; b 2 b�a�; c 2 c�a�� 	
; �14�

wi2�a� � max fi�a; b; c� j a 2 a�a�; b 2 b�a�; c 2 c�a�� 	 �15�

for i � 1; 2; 3, a 2 �0; 1�, where �wi1�a�;wi2�a�� is an a-cut of wi. It is easy to see that: (1) of1=oa > 0,
of1=ob > 0; (2) of2=oa < 0, of2=oc > 0; and (3) of3=ob < 0, of3=oc < 0. However, f1 may be increasing for
some c and decreasing for other c. Similarly, for f2 a function of b and f3 a function of a. Hence

w11�a� � f1�a1�a�; b1�a�; c��; �16�
w12�a� � f1�a2�a�; b2�a�; c��� �17�

for c�, c�� in c�a�, and

w21�a� � f2�a2�a�; b�; c1�a��; �18�
w22�a� � f2�a1�a�; b��; c2�a�� �19�

for b�, b�� in b�a�, and

w31�a� � f3�a�; b2�a�; c2�a��; �20�
w32�a� � f3�a��; b1�a�; c1�a�� �21�
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for a�, a�� in a�a�, where a�a� � �a1�a�; a2�a��, b�a� � �b1�a�; b2�a��, and c�a� � �c1�a�; c2�a��. In this way we
®nd the wi, 16 i6 3.

Let us call the procedure of calculating the weights using the expressions in this section, Method II.
Method I will use the EA and Eqs. (7) and (8).

To test Method I we used both methods on the following positive reciprocal matrix:

A �
1 a b
aÿ1 1 3
bÿ1 1=3 1

24 35 �22�

from [12,20], for a � �5=6; 6=7�, b � �1=2; 2=3�. The results are shown in Table 1. We see that the EA
computes a good approximation to the fuzzy weights obtained using Method II.

3.2. m� 4

Let

A �
1 a b c
aÿ1 1 d e
bÿ1 dÿ1 1 f
cÿ1 eÿ1 f ÿ1 1

2664
3775 �23�

Table 1

Testing the evolutionary algorithm method (Method I) on a 3� 3 example problem

a Method I Method II

w1�a� w1�a�
0 �0:5273; 0:6893� �0:5267; 0:6908�
0.2 �0:5538; 0:6793� �0:5535; 0:6806�
0.4 �0:5771; 0:6664� �0:5765; 0:6695�
0.6 �0:5970; 0:6561� �0:5965; 0:6575�
0.8 �0:6153; 0:6442� �0:6142; 0:6445�
1.0 �0:6301; 0:6301� �0:6301; 0:6301�
a w2�a� w2�a�
0 �0:1893; 0:2590� �0:1888; 0:2598�
0.2 �0:1951; 0:2497� �0:1940; 0:2503�
0.4 �0:2005; 0:2408� �0:1996; 0:2415�
0.6 �0:2076; 0:2330� �0:2055; 0:2332�
0.8 �0:2119; 0:2254� �0:2118; 0:2256�
1.0 �0:2184; 0:2184� �0:2184; 0:2184�
a w3�a� w3�a�

�0:1206; 0:2131� �0:1204; 0:2136�
0.2 �0:1259; 0:1958� �0:1254; 0:1962�
0.4 �0:1313; 0:1820� �0:1309; 0:1821�
0.6 �0:1374; 0:1698� �0:1370; 0:1703�
0.8 �0:1442; 0:1599� �0:1438; 0:1602�
1.0 �0:1515; 0:1515� �0:1515; 0:1515�
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be a positive, reciprocal matrix. If wT � �w1;w2;w3;w4� is the positive, normalized, eigenvector of A
corresponding to kmax, then there are formulas 1 [40] wi � fi�a; b; c; d; e; f �, 16 i6 4. We fuzzify these ex-
pressions producing the fuzzy weights wi � fi�a; b; . . . ; f �, 16 i6 4. As before, we use the extension prin-
ciple to ®nd wi, for all i, so that [17]:

wi1�a� � minffi�a; b; c; d; e; f � j a 2 a�a�; . . . ; f 2 f �a�g; �24�

wi2�a� � maxffi�a; b; c; d; e; f � j a 2 a�a�; . . . ; f 2 f �a�g �25�
for 16 i6 4, a 2 �0; 1�. The expressions fi are now quite complicated so it is very di�cult to compute the
wij�a�, 16 i6 4, 16 j6 2, a 2 �0; 1�. So, we wrote another EA to estimate the wij�a� 16 i6 4, 16 j6 2,
a � 0; 0:2; . . . ; 1:0 in Eqs. (24) and (25).

We tested Method I again on the following 4� 4 matrix:

A �
1 a b 1
aÿ1 1 d e
bÿ1 dÿ1 1 f
1 eÿ1 f ÿ1 1

2664
3775; �26�

where a � �5=6; 6=7�, b � �4=5; 5=6�, d � �1=1; 2=2�, e � �4=4; 6=6�, f � �3=4; 5=6�. The positive reciprocal
matrix was also used in [12,20]. The results are displayed in Table 2. Again, Method I is a good approx-
imation to the fuzzy weights wi, 16 i6 4, assuming that Method II also produced good estimates. We
conclude that our new Method I can obtain good estimates of the fuzzy weights.

4. Application

This application has been developed from an example in [38,39]. A recent college graduate has be o�ered
three jobs A1, A2, A3. In order to rank these jobs he evaluates each with respect to ®ve criteria: (1) C1 � pay;
(2) C2 � bene®ts; (3) C3 � location; (4) C4 � colleagues (fellow workers); and (5) C5 � potential for ad-
vancement. Using FHA he constructs the following fuzzy reciprocal matrices:

A1 �
1 �3=3; 5=5�ÿ1

1=2
�3=3; 5=5� 1 �2=3; 3=4�

2 �2=3; 3=4�ÿ1
1

24 35 �27�

for C1 � pay,

A2 �
1 �2=3; 3=4�ÿ1 �2=3; 3=4�ÿ1

�2=3; 3=4� 1 1
�2=3; 3=4� 1 1

24 35 �28�

for C2 � bene®ts,

A3 �
1 1 �7=7; 8=10�
1 1 �7=8; 9=10�

�7=7; 8=10�ÿ1 �7=8; 9=10�ÿ1
1

24 35 �29�

1 One must ®rst correct the expression for kmax.
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for C3 � location,

A4 �
1 �1=3; 3=3�ÿ1 �2=2; 2=5�

�1=3; 3=3� 1 �6=7; 7=8�
�2=2; 2=5�ÿ1 �6=7; 7=8�ÿ1

1

24 35 �30�

for C4 � colleagues,

A5 �
1 �4=4; 4=6�ÿ1 �3=4; 5=5�ÿ1

�4=4; 4=6� 1 1
�3=4; 5=5� 1 1

24 35 �31�

for C5 � advancement, and

Table 2

Testing Method I on a 4� 4 example problem

a Method I Method II

w1�a� w1�a�
0 �0:4521; 0:5283� �0:4523; 0:5291�
0.2 �0:4602; 0:5219� �0:4594; 0:5225�
0.4 �0:4672; 0:5157� �0:4667; 0:5165�
0.6 �0:4726; 0:5108� �0:4739; 0:5113�
0.8 �0:4819; 0:5043� �0:4816; 0:5054�
1.0 �0:4891; 0:5012� �0:4887; 0:4999�
a w2�a� w2�a�
0 �0:1667; 0:2579� �0:1616; 0:2589�
0.2 �0:1671; 0:2533� �0:1655; 0:2543�
0.4 �0:1686; 0:2510� �0:1693; 0:2492�
0.6 �0:1724; 0:2473� �0:1729; 0:2467�
0.8 �0:1765; 0:2443� �0:1761; 0:2416�
1.0 �0:1792; 0:2383� �0:1788; 0:2375�
a w3�a� w3�a�
0 �0:1251; 0:2303� �0:1247; 0:2309�
0.2 �0:1290; 0:2251� �0:1295; 0:2254�
0.4 �0:1352; 0:2201� �0:1346; 0:2209�
0.6 �0:1412; 0:2128� �0:1400; 0:2132�
0.8 �0:1463; 0:2102� �0:1454; 0:2097�
1.0 �0:1504; 0:2041� �0:1511; 0:2045�
a w4�a� w4�a�
0 �0:1123; 0:1433� �0:1120; 0:1431�
0.2 �0:1130; 0:1424� �0:1131; 0:1416�
0.4 �0:1138; 0:1410� �0:1141; 0:1401�
0.6 �0:1153; 0:1400� �0:1151; 0:1388�
0.8 �0:1159; 0:1389� �0:1161; 0:1370�
1.0 �0:1162; 0:1361� �0:1169; 0:1353�
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�32�

for the criteria, where P � pay, B � bene®ts, L � location, Co � colleagues, and Av � advancement. In the
Ai matrices the: (1) ®rst row/column corresponds to alternative A1; (2) second row/colum is A2; and (3) the
third row/column is for job A3. Using our EA we compute the fuzzy weight vectors wk for Ak, 16 k6 5, and
e for E. Then, from Eq. (3), we get

rj �
X5

k�1

wjkek �33�

for all j. The fuzzy weight for job Aj is rj. However, before showing the results we need to discuss con-
sistency and the ranking of fuzzy numbers.

4.1. Consistency

Let A be a positive, reciprocal, matrix. A is said to be consistent when aikakj � aij for all i, j, k. This
means that if the judge states aik � 2=1 for Ai versus Ak and gives akj � 3=1 for Ak against Aj, then to be
logically consistent this judge should state 6=1 for Ai versus Aj. If A is consistent then kmax � m and in
general kmax P m. So a measure of consistency is built around the di�erence �kmax ÿ m� (see [38,40±42]). We
would say A is ``reasonably'' consistent when �kmax ÿ m� is not too large (maybe kmax ÿ m6 1).

To talk about consistency for fuzzy, positive, reciprocal matrices we ®rst need to de®ne what is meant by
M P N , M > N and M � N for two fuzzy numbers M and N . De®ne (see [12,20])

v�M P N� � sup
x P y
�min�M�x�;N�y��: �34�

We then write M > N if v�M P N� � 1 and v�N P M� < h, where h is some ®xed positive fraction less than
1. Let us use h � 0:8 in this paper. Next, we write M � N when M is not greater than N and N is not greater
than M . Or, if

min�v�M P N�; v�N P M��P h; �35�

then M � N . Finally, we say M P N if M > N or M � N .
A fuzzy, positive, reciprocal matrix A � �aij� is de®ned to be consistent when

aik � akj � aij �36�

for all i, j, k. The following theorem was proven in [12].

Theorem 1. Let A � �aij� be a fuzzy, positive, reciprocal matrix with aij � �aij=bij; cij=dij�. Choose
aij 2 �bij; cij� and form A � �aij�. If A is consistent, then A is consistent.
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We shall not demand all Ak and E to be perfectly consistent. All we shall ask is that they be ``rea-
sonably'' consistent. What this means is that each has an A, constructed as in Theorem 1, which is rea-
sonably consistent.

If we look at the Ai, 16 i6 5, and E in the application in Section 4, all are ``reasonably'' consistent. In
fact A2, A3, and A5 are consistent. Let us look at A1 to see how it is ``reasonably'' consistent. From
Theorem 1, for A1 to be consistent we need �bij; cij� � �bik; cik� � �bkj; ckj�, for all i, j, k. Consider i � 1, k � 2
and j � 3. We see that �b13; c13� � 1=2, �b12; c12� � �1=5; 1=3�, and �b23; c23� � 3 and 1=2 62 �3=5; 1�. But since
1=2 is ``reasonably'' close to 3=5 we conclude a12 � a23 is ``reasonably'' close to a13. In A1 we ®nd that aik � akj

is ``reasonably'' close to aij for all i, k, j and we conclude that A1 is ``reasonably'' consistent. We have no
test for reasonably consistent for fuzzy, positive, reciprocal matrices as is used for crisp, positive, reciprocal
matrices.

4.2. Ranking fuzzy numbers

We end up (Eq. (33)) with fuzzy numbers r1; . . . ; rm which need to be ranked so we may obtain the ®nal
ranking of the alternatives. Let H1 be all the undominated fuzzy numbers ri. We say ri is undominated if no
rj > ri, j 6� i. Next de®ne H2 to be all the undominated rk after deleting all the fuzzy numbers in H1.
Similarly, we construct H3; . . . ;Hd . Then, all the Ai corresponding to a ri in H1 have the highest ranking, all
the Aj having rj in H2 have the second ranking, etc. Properties of this ranking method are given in [12,20].

5. Results

We ®rst found the fuzzy weights vectors wk for Ak, 16 k6 5, using the formulas in Section 3.1. To obtain
the fuzzy weight vector for E we applied our EA (Method I of Section 3). All fuzzy numbers were calculated
for a-cuts of a � 0, 0:2, 0:4, 0:6, 0:8, 1:0. Instead of displaying all these data we show, in Table 3, only a � 0
and a � 1. The ®nal fuzzy weights r1, r2, r3 are given in Fig. 4. We see that H2 � fA1;A3g, H1 � fA2g and the
student selected A2.

6. Summary and conclusions

We directly fuzzi®ed Saaty's original procedure of computing the weights in HA to get the fuzzy weights
in FHA. We checked our method against the 3� 3, and 4� 4 cases, where formulas exist for the weights, to
show we are obtaining the correct fuzzy weights. Therefore, we believe we now have the correct FHA.

The calculation of the fuzzy weights (Eqs. (6)±(8)) is quite complicated so we used an EA (Appendix A)
to search for the min (Eq. (7)) and the max (Eq. (8)). Future research will be concerned with obtaining a
more e�cient procedure of getting the fuzzy weights.

Appendix A

In this appendix we discuss the design of the evolutionary algorithm (EA) used for obtaining the fuzzy
eigenvector w of a fuzzy, positive, reciprocal matrix A. Evolutionary algorithms perform a directed search.
Therefore, they are useful for this kind of optimization problem, since there are no algorithms to compute
the optimal values (Eqs. (7) and (8)).
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The overall way of working of evolutionary algorithms is adopted from nature where the ®ttest
members of a population have better chances to survive than other population members. The main
operators of evolution are selection, which selects the ®ttest members of the population, and the re-
combination and mutation operators which are needed to create a new generation out of the ®ttest
population members selected by the selection operator. These operators are then applied to the new

Table 3

Fuzzy weights in the application

w11 w12 w13

For A1

a � 0 �0:1158; 0:1630� �0:5401; 0:6849� �0:1990; 0:2967�
a � 1 �0:1219; 0:1549� �0:5973; 0:6486� �0:2296; 0:2478�

w21 w22 w23

For A2

a � 0 �0:1111; 0:1996� �0:3776; 0:4754� �0:3776; 0:4753�
a � 1 �0:1429; 0:1429� �0:4286; 0:4286� �0:4286; 0:4286�

w31 w32 w33

For A3

a � 0 �0:4443; 0:4999� �0:4442; 0:4999� �0:0476; 0:0666�
a � 1 �0:4509; 0:4706� �0:4706; 0:4902� �0:0556; 0:0625�

w41 w42 w43

For A4

a � 0 �0:2101; 0:4406� �0:4723; 0:6945� �0:0653; 0:1184�
a � 1 �0:2158; 0:2158� �0:6818; 0:6818� �0:1024; 0:1024�

w51 w52 w53

For A5

a � 0 �0:0834; 0:1255� �0:4332; 0:5000� �0:3977; 0:4666�
a � 1 �0:1002; 0:1111� �0:4332; 0:4444� �0:4444; 0:4660�

e1 e2 e3 e4 e5

For E

a � 0 �0:0720; 0:1158� �0:0371; 0:0695� �0:3183; 0:3670� �0:0872; 0:1328� �0:3816; 0:4276�
a � 1 �0:0836; 0:1050� �0:0430; 0:0525� �0:3231; 0:3661� �0:0994; 0:1215� �0:3850; 0:4245�

Fig. 4. The ®nal fuzzy weights in the application.
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generation. The process continues until a prede®ned number of generations is reached or some ®tness
limit is obtained.

Let us now discuss our EA in more detail. Since the aim is to ®nd the fuzzy eigenvector w of an m� m,
positive, reciprocal, fuzzy matrix A, we have to run the EA for each k, 16 k6m, for each a-cut to obtain
wk1�a� and wk2�a� (see Eqs. (7) and (8)).

For each EA we ®rst create an initial population consisting of P � 300 elements. Each element of the
population represents a crisp matrix Ap, 16 p6 P . Since the Ap has to be a positive, reciprocal matrix only
the upper triangular matrix without the diagonal (aii � 1, 16 i6m) has to be used for coding an element of
the population. Therefore, Ap is randomly generated by

aij 2 aij�a� �A:1�

for 16 i < j6m. In order to obtain a positive, reciprocal matrix we simply have to set aii � 1, 16 i6m and
aji � aÿ1

ij for 16 i < j6m. Code each matrix Ap into

pp � �a1; a2; a3; . . . ; aN ; r� �A:2�

with a1 � a12, a2 � a13, a3 � a23; . . . ; aN � amÿ1;m (N � 0:5 � m � �mÿ 1�) and r stands for the mutation rate
of the corresponding element, which is initially set to 0.3.

After initializing the evolution starts with the selection process. Here the kth component of the eigen-
vector of corresponding population member is computed as discussed in Section 2 (Eqs. (4) and (5)). These
values stand for the ®tness of the corresponding element, since wk1�a� (wk2�a�) have to be optimized. For
evaluating wk1�a� those 45 members of the population are selected having the smallest values, and for wk2�a�
those 45 members are chosen having the largest values.

The recombination process now builds a temporary generation by applying a crossover operator to the
previously selected individuals (of the previous generation). For each member of the temporary generation
two ``parents'' pold1

p and p0old2
p are randomly chosen from the 45 ®ttest elements of the previous generation.

In order to get many di�erent individuals a generalized multipoint crossover operator is used. According to
the user de®ned crossover probability, which in the experiments was set to 0:875 a number q � d0:875Ne is
generated. Now, q crossover points ci (16 i6 q) are chosen randomly in f1; 2; . . . ;Ng. After ordering the
crossover points and initially set c0 � 0 and cq�1 � N we get 0 � c0 < c16 c26 � � � 6 cq6 cq�1 � N . Now,
another value r 2 �0; 1� is randomly chosen so that between two crossover points co and co�1 the new matrix
is build by using the equations:

atemp1
n � aold1

n � r � �aold2
n ÿ aold1

n �; �A:3�
atemp2

n � aold2
n � r � �aold1

n ÿ aold2
n � �A:4�

for 0 < co < n6 co�16N , o � 1; . . . ; q. The mutation rate r is also adjusted during the recombination
process by using the same operator and we get

rtemp1 � rold1 � r � �rold2 ÿ rold1�; �A:5�
rtemp2 � rold2 � r � �rold1 ÿ rold2� �A:6�

for a randomly chosen r 2 �0; 1�. Now, one of these two elements is randomly chosen (called ptemp
p ) and put

into the temporary generation. By applying Eqs. (A.3) and (A.5) 300-times to randomly chosen parents we
get the whole temporary generation.

The mutation process ®nally generates the new generation by randomly changing the members
ptemp

p � �atemp
1 ; . . . ; atemp

N ; rtemp� of the temporary generation. One by one each individual is modi®ed
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according to its own mutation rate. The mutation rate rtemp of each member is ®rst modi®ed. Here we used
the equation

rnew � rtemp � exp�s � N�0; 1��; �A:7�
where N�0; 1� stands for a normally distributed random variable having expectation value 0 and standard
deviation 1. s is an additional parameter which is set to nÿ0:5 [1]. The global factor exp�sN�0; 1�� allows for
an overall change of the mutability for each individual. Each element an (16 n6N ) of the individual is
mutated by computing

anew
n � atemp

n � rnew � N�0; 1� �A:8�

for 16 n6N . Here we also have to check whether anew
n lies in the a-cut of the corresponding aij or not. If so,

mutation continues otherwise Eq. (A.8) is applied to atemp
n until atemp

n 2 aij�a� holds. By repeating this process
for each temporary individual we get the entire new generation pp.

Now again the selection operator ®nds the best members of the population, which are used by the re-
combination operator to produce a temporary generation and the mutation operator which mutates each
temporary element in order to construct the next generation. As we have already mentioned this process
continues until a given number of generations is reached, or a given ®tness level is obtained.
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