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Due to the IT advances, the logistics management faces a change to the new era. This article proposes a
novel method to evaluate the real-time overall performance of a logistics network for a supply chain. The
corresponding strategies to manage the underperformed channels can be subsequently obtained in the
method. Thus, the logistics network can be managed timely under the stochastic environment, and it
makes the SCM robust. The overall performance of the logistics network is integrated by the individual
logistics channel real-time performance which can be easily obtained by the new IT technologies such
as RFID, etc. The fuzzy-scorecard is introduced to indicate the measured key performance indicators
(KPI) for the network. Some numerical examples are presented to illustrate the various scenarios of man-
agement for the proposed method.
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1. Introduction

The term Supply Chain Management (SCM) has been used to
explain the planning and control of materials and information
flows along with the logistic activities not only internally in a
company but also externally between companies (Supply Chain
Council, 2008). SCM is now an important strategy for companies
to gain competitiveness chain-widely. However, the cost is still
the key factor to face (Lambert & Cooper, 2000). Since the global-
ized economy changes very fast, the logistic dynamics for each
firm’s supply chain is also versatile (Bogataj & Bogataj, 2007).
To realize such changes, measurement and metrics were devel-
oped by many researchers (Chen & Paulraj, 2004; Cooper & Ell-
ram, 1993), but such information were available only after a
long period of investigation. The short-term evaluation and mea-
surement methods are important for success in such a versatile
environment. Lin (2009) proposed an integrated framework to
use the radio frequency identification (RFID) technology in SCM
for the quick measurement of logistic activities. Bhagwat and
Sharma (2007) presented the balanced scorecard approach for
SCM that measures and evaluates day-to-day business operations.
Hou and Huang (2006) gave the case study in SCM of the printing
industry by using the RFID technology. Lee and Chan (2009) pre-
sented another case study in SCM of the reverse logistics manage-
ment by using the RFID technology. Baars, Kemper, Lasi, and
Siegel (2008) even combined the RFID technology with the busi-
ness intelligence functions to optimize the SCM. Hsiao, Lin, and
Huang (2010) proposed a method to solve the lot size problem
ll rights reserved.
between firms in a serial supply chain by integer programming
technique. Hwang (2002) solved the routing problem for supply
chain logistics with genetic algorithm. A detailed review about
the soft computing techniques dealing with SCM problems was
given by Ko, Tiwari, and Mehnen (2010). However, all of them
only dealt with the deterministic supply chain issues.

Although these efforts have enhanced the capability of
short-term evaluation and measurement in SCM, the real-time
evaluation of overall performance for the logistics networks in a
stochastic environment still remains very limited. In practice, the
capacity of logistics between firms is stochastic in nature (Lin,
2010). They may also fail sometimes. For example, the container
or cargo through each transportation channel may be in mainte-
nance, reserved by other agents or in other conditions. This gives
great difficulty in making a precise management.

This article proposes a novel method to evaluate the real-time
overall performance of a logistics network in a stochastic environ-
ment. The overall performance of the logistics network is inte-
grated by the individual logistics channel real-time performance
which can be easily obtained by the new IT technologies such as
RFID, etc. Then, the fuzzy-scorecard is introduced to indicate the
calculated key performance indicators (KPI) for the network.
Now, the KPI management is an important activity in the modern
corporation. Parmenter (2007) presented various KPI constructions
in the real applications. Because scorecarding (IBM, 2011) which
was derived from the concept of balanced scorecard (Kaplan &
Norton, 1996) is mature and popular in the modern (KPI) manage-
ment tools, the fuzzy-scorecard approach is proposed as a variant
of the balanced scorecard approach. However, most of the tools
only used the management experience to set the target of the indi-
vidual performance (or scorecard). It may cause the aggregated
scorecard inconsistent or distortion.
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The fuzzy-scorecard approach is a scorecarding technique
which uses fuzzy mathematics and flow network theory to aggre-
gate the individual performance consistently. To simplify the
explanation of the proposed approach without loss of generality,
we use but not limit to the fuzzy sets, C = {underperformed, nor-
mal, overperformed}, to indicate the performance status of each
individual channel, and H = {underperformed, normal}, to indi-
cate the performance of the overall logistic network since no
one will be blamed for the over performance of a department
in a corporation. Similarly, we use but not limit to the triangular
membership function to explain the fuzzy calculation in this ap-
proach. More complicated membership functions are applicable
in this approach for more specific applications. This article also
uses the colored symbols (called scorecards) to indicate the fuzzy
words. For example, the red triangular ‘‘ ’’ denotes ‘‘underper-
formed’’; the green circle ‘‘ ’’ denotes ‘‘normal’’; the orange dia-
mond ‘‘ ’’ denotes ‘‘overperformed.’’ The optimal planning of the
capacity for each individual transportation channel can be derived
by the method proposed by Chen (2010), which can derive the
lowest cost plan for the capacity allocation of each individual
channel. Chen presented a very efficient algorithm to solve the
non-linear integer programming problem for the optimal capacity
planning in robust SCM. Then, the planned capacity is taken as
the standard target for the ‘‘normal’’ status of that channel. After
the calculation of fuzzy-scorecards, the corresponding strategies
to manage the underperformed channels can be subsequently ob-
tained. Thus, the logistics network can be managed timely under
the stochastic environment. The calculation is based on the pop-
ular Minimum Path (MP) technique (Ford & Fulkerson, 1962).
Please also refer to the works of Chen and Lin (2008), Lin
(2001), Lin, Jane, and Yuan (1995), Xue (1985), Yeh (2008) to
learn more details of the MP technique. A robust supply chain
means that the supply chain is functioning even in the partial
failure of some channels. Such status can be aware of by the
respective individual scorecard. The remainder of the work is de-
scribed as follows: The assumptions for the approach are pre-
sented in Section 2. Section 3 describes the logistics network
model in robust SCM. A solution procedure to evaluate the perfor-
mance is proposed subsequently in Section 4. Then, the calcula-
tion of fuzzy-scorecard is illustrated by some numerical
examples and scenarios in Section 5. Section 6 draws the conclu-
sion and discussions of this article.
Fig. 1. The scorecards and the shape of the membership function ki.
2. Assumptions

Let G = (A,B,M) be a logistics network where A = {aij1 6 i 6 n} is
the set of arcs representing the logistics channels between places,
B = {bjj1 6 j 6 s} is the set of nodes representing the warehouses or
firms in different places, and M = (m1,m2, . . . ,mn) is a vector with mi

(an integer) being the maximal capacity of arc ai. Note that mi can
be derived from the upper bound of the corresponding empirical
distribution of each channel. Such a G is assumed to satisfy the fol-
lowing assumptions:

i. The capacity of arc ai is an integer-valued random variable
which takes values from the set {0,1,2, . . . ,mi} according to
an empirical distribution function li, which can be collected
from any feasible performance indicator (PI) for the channel.
For example, the ‘‘throughput’’ of the corresponding channel
to successfully complete the transportation is a feasible PI.
Note that 0 in capacity often denotes a failure or being
unavailable.

ii. The nodes are perfect, which means the warehouses (nodes)
will not fail and are excluded from the calculation of net-
work reliability.
iii. Flow in G must satisfy the flow-conservation law (Ford &
Fulkerson, 1962), which means no flow will be created or
destroyed at any channel while the network is functioning.

iv. The arcs are statistically independent from each other.

The feasible PI for the arc means an indicator satisfying both
Assumptions iii and iv. Since a different arc represents a different
channel in the network, the respective probability distribution is
also different from each other. The corresponding distribution is
governed by li for each arc ai. In certain conditions, one can adopt
the same distribution function for all arcs when applying the pro-
posed method for simplification.
3. The logistics network model

Suppose mp1, mp2, . . . , mpz are totally the MPs from the source
(the shipper) to the sink (the consignee). Thus, the network model
can be described in terms of two vectors: the capacity vector
X = (x1, x2, . . . , xn) and the flow vector F = (f1, f2, . . . , fz), where xi de-
notes the current capacity on ai and fj denotes the current flow
on mpj. Then, such a vector F is feasible if and only if

Xz

j¼1

ffjjai 2 mpjg 6 mi; for i ¼ 1;2; . . . ;n: ð1Þ

Eq. (1) describes that the total flow through ai cannot exceed
the maximal capacity on ai. We denote such set of F as UM � {FjF
is feasible under M}. Similarly, F is feasible under X = (x1,x2, . . . ,xn)
if and only if

Xz

j¼1

ffjjai 2 mpjg 6 xi; for i ¼ 1;2; . . . ;n: ð2Þ

For clarity, let UX = {FjF is feasible under X}. The maximal flow
under X is defined as VðXÞ �maxf

Pz
j¼1fjjF 2 UX}.
3.1. The fuzzy-scorecard for the individual channel

Through the advanced IT technologies such as RFID technology,
the feasible PI for each individual channel can be obtained from sam-
pling a fixed moving time frame for a proper long period. The corre-
sponding empirical distribution li is then derived from the collected
statistics. A moving average �xi for the fixed time frame is also ob-
tained to represent the current status of the channel. Let ki be the
membership function mapping from C to [0,1] for the fuzzy-score-
card of ai and oi be the optimal allocated capacity for that channel
(i.e., the contract capacity). In practice, an allowance Dd is used by
the channel owner to manage the transportation operations. Fig. 1
denotes the scorecards and the conventional shape of ki (Kosko,
1997). The current fuzzy-scorecard ~xi of each channel is then defuzz-
ified by the following equation:

~xi ¼ k�1
i ð�xiÞ; ð3Þ

where k�1
i is a reverse function of ki.
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3.2. The fuzzy-scorecard for the overall network

Given a level d, the network performance Rd is the probability
that the maximal flow is no less than d, i.e., Rd � Pr{XjV(X) P d}.
To calculate Rd, it is advantageously to find the minimal vector in
the set {XjV(X) P d}. A minimal vector X is said to be a lower
boundary point (LBP) for d if and only if (i) V(X) P d and (ii)
V(Y) < d for any other vector Y such that Y < X, in which Y 6 X if
and only if yj 6 xj for each j = 1, 2, . . ., n and Y < X if and only if
Y 6 X and yj < xj for at least one j. Suppose there are totally t lower
boundary points for d: X1, X2, . . ., Xt, and Ei = {XjX P Xi}, the proba-
bility Rd can be equivalently calculated via the inclusion–exclusion
principle (or, the Poincaré theory) as

Rd ¼ Pr
[t

i¼1

Ei

( )
¼
Xt

k¼1

ð�1Þk�1
X

I�f1;2;...;tg;jIj¼k

Pr
\
i2I

Ei

( )
; ð4Þ

where

Pr
\
i2I

Ei

( )
¼
Yn

j¼1

Xmj

l¼maxfxij j8i2Ig
ljðlÞ:

Let kR be the membership function mapping from fuzzy set H to
[0,1]. Then, the fuzzy-scorecard eRd is defuzzified by the following
equation:eRd ¼ k�1

R ðRdÞ; ð5Þ

where k�1
R is a reverse function of kR. Fig. 2 denotes the scorecards

and the conventional shape of kR.

3.3. Generation of all LBPs for d

At first, we find the flow vector F 2 UM such that the total flow of
F equals d. It is defined in the following demand constraint:Xz

j¼1

fj ¼ d: ð6Þ

Then, let T={FjF 2 UM and satisfy Eq. (6)}. We show that if an LBP
X for d exists, then there is an F 2 T by the following lemmas:

Lemma 3.1. If X is an LBP for d, then there is an F 2 T such that

xi ¼
Xz

j¼1

ffjjai 2 mpjg for each i ¼ 1;2; . . . ;n: ð7Þ
Proof. If X is a lower boundary point for d, then there is an F such
that F 2 UX and F 2 T. It is known that

Pz
j¼1ffjjai 2 mpjg 6 xi; 8i.

Suppose there is a k such that xk >
Pz

j¼1ffjjak 2 mpj}. Set
Y = (y1, y2, yk�1, yk, yk+1, . . ., yn) = (x1, x2, . . ., xk�1, xk � 1, xk+1, . . ., xn).
Hence, Y < X and F 2 UY (since

Pz
j¼1ffjjai 2 mpjg 6 yi; 8i), which

indicates that V(Y) P d and contradicts to that X is a lower bound-
ary point for d. Thus, xi ¼

Pz
j¼1ffjjai 2 mpjg; 8i. h
Fig. 2. The scorecards and the shape of the membership function kR.
Given F 2 T, we generate a capacity vector XF = (x1,x2, . . ., xn) via
Eq. (7). Then the set X = {XFjF 2 T} is built. Let Xmin = {XjX is a min-
imal vector in X}. Lemma 3.1 implies that the set X includes all
LBPs for d. The following lemma further proves that Xmin is the
set of LBPs for d.

Lemma 3.2. Xmin is the set of LBPs for d.
Proof. Firstly, suppose X 2Xmin (note that V(X) P d) but it is not a
lower boundary point for d. Then, there is a lower boundary point Y
for d such that Y < X, which implies Y 2X and thus, contradicts to
that X 2Xmin. Hence, X is a lower boundary point for d. Conversely,
suppose X is a lower boundary point for d (note that X 2X) but
X R Xmin, i.e., there is a Y 2X such that Y < X. Then, V(Y) P d which
contradicts to that X is a lower boundary point for d. Hence
X 2Xmin. h
4. Solution procedure

Fig. 3 denotes the proposed procedure for the applications.
Firstly, the logistics network for the supply chain is created. The
lower boundary points for the network are generated by the algo-
rithm stated in Section 4.1. Meanwhile, the fuzzy-scorecard for the
individual channel is obtained from sampling a fixed moving time
frame for a proper long period. Then, the performance Rd is calcu-
lated as the overall logistics performance at this moment. By
defuzzifying Rd, the fuzzy-scorecard ~Rd is obtained from the calcu-
lation discussed in Section 3.2.

4.1. Algorithm

Searching for all MPs from a 2-state network is NP-complete
(Ball, 1986). Therefore, we take the same manner as the work of
Chen and Lin (2009), and suppose that all MPs have been pre-com-
puted. For a recent discussion about how to efficiently search for
all MPs in a general directed flow network, Chen proposed an effi-
cient way to do this search (Chen, Guo, & Zhou, 2010). All lower
boundary points for d can be generated by Algorithm 1.

Algorithm 1. Search for all lower boundary points for d.

Step 1. Find all feasible flow vector F = (f1, f2, . . . , fz) satisfy-
ing both capacity and demand constraints.
i. enumerate fj for 1 6 j 6 z and

0 6 fj 6min{mijai 2mpj} do
ii. if fj satisfies the following equations
Xz

j¼1

ffjjai 2 mpjg 6 mi and
Xz

j¼1

fj ¼ d; for 1 6 i 6 n;
then T = T [ {F} endif
end enumerate
Step 2. Generate the set X = {XFjF 2 T}.
i. for F in T do

ii. xi ¼
Pz

j¼1ffjjai 2 mpjg, for i = 1, 2, . . ., n.
iii. UX = UX [ {XF}. //where XF = (x1,x2, . . . ,xn) may

have duplicates.

endfor
iv. for X in UX do //Remove the redundant vectors.
v. if X R X, then X = X [ {X} endif



Fig. 3. The generation procedure of the fuzzy-scorecard eRd .
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endfor
Step 3. Find the set Xmin = {XjX is a minimal vector in X}.
Let J = {jjXj R Xmin}.
i. for i R J and 1 6 i 6 jXj do //where jXj denotes

the number of elements in X.
ii. for j R J and i < j 6 jXj do

iii. if Xj 6 Xi, then J = J [ {i} and goto Step 3v.

else if Xj > Xi, then J = J [ {j} endif
endfor
iv. Xmin = Xmin [ {Xi}.
v. endfor

Step 1 indicates that according to the MPs, the feasible F under
Eqs. (1) and (6) was enumerated into set T. Then, the candidate
vector set X for lower boundary points can be derived from T un-
der Eq. (7) in Step 2. Finally, the set Xmin of lower boundary points
was filtered out by pairwise comparison from Step 3.
Fig. 4. A logistics network from Shanghai to Taipei.
4.2. Storage and computational complexity analyses

The number of solutions for T was bounded by z� 1
zþ d� 1

� �
. The

number of XF generated was then bounded by z� 1
zþ d� 1

� �
. The

storage space needed for Xmin was bounded by O z� 1
zþ d� 1

� �� �
in the worst case. In sum, the total storage space needed was

O z� 1
zþ d� 1

� �� �
in the worst case. The pairwise comparisons

were required for generating Xmin from z� 1
zþ d� 1

� �
solutions.

This took O n2 z� 1
zþ d� 1

� �� �
time to generate Xmin. In short, the

total computation time required was O n2 z� 1
zþ d� 1

� �� �
in the

worst case.

5. Numerical examples

Suppose a shipper was at Shanghai and a consignee was at Tai-
pei (Chen, 2010). Assume that the load should pass the third place
such as Hong Kong or Tokyo before arriving Taipei. Fig. 4 denotes
such logistics network, where a1, a2, a5 and a6 are the cheaper
channels by sea, and a3 and a4 are the more expensive backup
channels via air. The optimal capacity plan obtained was: {a1 = 5,
a2 = 5, a3 = 1, a4 = 1, a5 = 5, a6 = 5} (unit in 10 tons) from the work
of Chen (2010). The allowance (Dd) for the transportation opera-
tion was 1 unit (or 10 tons). There were totally 4 MPs found:
mp1 = {a1,a2}, mp2 = {a1,a3,a6}, mp3 = {a5,a6}, mp4 = {a5,a4,a2}. To
facility the illustration of the proposed method, the throughput
of the channel was taken as the individual performance indicator
in the integration. The standard throughput level for the entire net-
work was 5 units (or 50 tons) per week. The fixed time frame was
seven days moving every day and the observation period was 1
month. Two scenarios with the corresponding improving strategies
of performance are demonstrated in the following subsections.

5.1. Scenario one – the port service failure

In this scenario, assume an accident in the Tokyo’s port stopped
the transportation service from Shanghai to Tokyo and from Tokyo
to Taipei. The throughputs were sampled. Before the accident, Ta-
ble 1 gives the results of sampling from those channels at the nor-
mal condition. The corresponding empirical distributions are
shown in Table 2. After the accident, Table 3 gives the results of
sampling from those channels at the abnormal condition.

From Table 2, the calculated network performance R5 was
0.991783 at the normal condition, and the overall fuzzy-scorecardeR5 is ‘‘normal’’. To explain the calculation, the data in Table 3 at the
abnormal condition was used for the step-by-step explanation as
follows:

Step 1. Find all feasible vector F = (f1, f2, f3, f4) satisfying both capac-
ity and demand constraints.



Table 1
The throughputs and scorecards of the six channels at the normal condition.

The channels The number of units per week ~xi=�xi

0a 1 2 3 4 5 6

a1 0b 2 3 5 11 90 24 /5
a2 0 2 3 6 12 93 19 /5
a3 95 24 6 0 0 0 0 /1
a4 93 20 7 0 0 0 0 /0
a5 0 2 3 4 10 94 22 /5
a6 0 2 3 6 12 95 17 /5

: Underperformed; : Normal; : Overperformed.
a Unit in 10 tons.
b The counts of occurrence.

Table 2
The empirical distributions for Table 1.

Distr. functions The number of units per week

0 1 2 3 4 5 6

l1 0.000 0.015 0.022 0.037 0.081 0.667 0.178
l2 0.000 0.015 0.022 0.044 0.089 0.689 0.141
l3 0.760 0.192 0.048 0.000 0.000 0.000 0.000
l4 0.775 0.167 0.058 0.000 0.000 0.000 0.000
l5 0.000 0.015 0.022 0.030 0.074 0.696 0.163
l6 0.000 0.015 0.022 0.044 0.089 0.704 0.126eR5/R5

/0.991783

: Underperformed; : Normal; : Overperformed.

Table 3
The empirical distributions and scorecards at the abnormal condition.

Distr.
functions

The number of units per week ~xi=�xi

0 1 2 3 4 5 6

l1 0.000 0.013 0.020 0.026 0.079 0.632 0.230 /6
l2 0.000 0.012 0.018 0.036 0.078 0.584 0.271 /6
l3 0.923 0.077 0.000 0.000 0.000 0.000 0.000 /0
l4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 /0
l5 0.933 0.048 0.019 0.000 0.000 0.000 0.000 /0
l6 0.891 0.064 0.045 0.000 0.000 0.000 0.000 /0eR5=R5 /0.738622

: Underperformed; : Normal; : Overperformed.
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i. enumerate fj for 0 6 f1 6 6, 0 6 f2 6 1, 0 6 f3 6 0,
0 6 f4 6 2 do

ii. if fj satisfies the following equations:

f1 + f2 6 6, f1 + f4 6 6, f2 6 1, f4 6 0, f3 + f4 6 2, f2 + f3 6 2
and
f1 + f2 + f3 + f4 = 5,
then T = T [ {F = (3,0,2,0)} endif

..

.

end enumerate
The result of T is

fð3;0;2;0Þ; ð3;1;1;0Þ; ð4;0;1;0Þ; ð4;1;0;0Þ; ð5;0;0;0Þg:
Step 2. Generate the set X = {XFjF 2 T}.
i. for F = (3,0,2,0) in T do

ii. x1 = 3 = f1 + f2, x2 = 3 = f1 + f4, x3 = 0 = f2, x4 = 0 = f4,
x5 = 2 = f3 + f4, x6 = 2 = f2 + f3,

iii. UX = UX [ {XF = (3,3,0,0,2,2)}.
.
..

endfor

iv. for X = (3,3,0,0,2,2) in UX do
v. if X R X, then X = X [ {X = (3,3,0,0,2,2)} endif

.
..
endfor
The result of X is

fX1 ¼ ð3;3; 0;0;2;2Þ;X2 ¼ ð4;3;1;0;1;2Þ;X3

¼ ð4;4; 0;0;1;1Þ;X4 ¼ ð5;4;1;0; 0;1Þ;X5

¼ ð5;5; 0;0; 0;0Þg:
Step 3. Find the set Xmin = {XjX is a minimal vector in X}.
i. for i = 1 6 5 do

ii. for j = 2 6 5do
iii. Because X2 = (4,3,1,0,1,2) 6 X1 = (3,3,0,0,2,2) is false

and X2 = (4,3,1,0,1,2) > X1 = (3,3,0,0,2,2) is false, then
do nothing.

ii. j = 3, repeat the loop again.

.
..

endfor

iv. Xmin = / [ {X1 = (3,3,0,0,2,2)}.

.
..

endfor
The result of Xmin is

fX1 ¼ ð3;3; 0;0;2;2Þ;X2 ¼ ð4;3;1;0;1;2Þ;X3

¼ ð4;4; 0;0;1;1Þ;X4 ¼ ð5;4;1;0; 0;1Þ;X5

¼ ð5;5; 0;0; 0;0Þg:
Finally, R5 can be calculated in terms of five lower boundary
points. At first, let E1 = {XjX P X1}, E2 = {XjX P X2}, E3 = {XjX P X3},
E4 = {XjX P X4} and E5 = {XjX P X5}. From Eq. (4), we got
R5 ¼ Pr

S5
i¼1Ei

n o
¼ 0:738622. Fig. 5 denotes the membership func-

tion for eR5. We get eR5 ¼ k�1
R ð0:738622Þ ¼ ‘‘Normal’’. Although the

channels from Shanghai to Tokyo and from Tokyo to Taipei were
failed, the logistics network still keeps alive. This is because the
flow from Shanghai to Hong Kong and from Hong Kong to Taipei
can fulfill the partial demand. However, the performance has
slightly decreased in comparison with that of the normal condi-
tion. A new route may be recommended to cover the lost flow if
the failure will be continued for a long time.

5.2. Scenario two – the ship maintenance

In Scenario two, assume the ship from Hong Kong to Taipei
stopped for maintenance. The throughputs were sampled. Table 4
gives the results of sampling from those channels. R5 is calculated
as 0.772561. We get eR5 ¼ k�1

R ð0:772561Þ ¼ ‘‘Normal’’. Although the
ship from Hong Kong to Taipei stopped for maintenance, the opti-
mal capacity plan made the logistics network survived. Nonethe-
less, the performance was still higher than that of Scenario one.
A new transportation company may be suggested to replace with
if the maintenance will be continued for a long time.
6. Conclusion and discussion

This article proposed a novel approach to evaluate the real-time
overall performance of a logistics network in a stochastic environ-
ment. The overall performance of the logistics network was inte-
grated by the individual logistics channel real-time performance
which could be easily obtained by the new IT technologies such
as RFID, etc. The fuzzy-scorecard approach was a scorecarding
technique which uses fuzzy mathematics and flow network theory
to aggregate the individual performance consistently. Accompany-
ing the optimal capacity plan, a robust supply chain management
can be fulfilled by the observation of those derived fuzzy-score-
cards. The corresponding strategies to manage the underperformed
channels can be subsequently obtained in the derivation.



Fig. 5. The derived fuzzy-scorecard for Scenario one.

Table 4
The empirical distributions and scorecards for Scenario two.

Distr.
functions

The number of units per week ~xi=�xi

0 1 2 3 4 5 6

l1 0.000 0.227 0.455 0.227 0.091 0.000 0.000 /2
l2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 /0
l3 0.255 0.426 0.319 0.000 0.000 0.000 0.000 /2
l4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 /0
l5 0.000 0.006 0.012 0.024 0.091 0.591 0.274 /5
l6 0.000 0.000 0.027 0.043 0.108 0.527 0.296 /6eR5=R5

/0.772561

: Underperformed; : Normal; : Overperformed.
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Although the management of key performance indicators (KPI)
has been now popular in the modern management practice or the
business intelligence activities, the consistent approaches for cal-
culating those performance indicators are still very limited. Then,
the fuzzy-scorecard approach provided a novel and consistent
way to calculate the efficient and effective performance indicator
for a logistics network in a stochastic environment. By the illustra-
tion of numerical examples and various scenarios, the proposed
approach is easy to implement and can be used as a business intel-
ligence function to help people making decision in management
activities.
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