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Preface
As with the first edition of this book, my overall goal is to provide readers 
with a nonmathematical introduction to basic concepts associated with 
structural equation modeling (SEM), and to illustrate basic applications 
of SEM using the AMOS program. All applications in this volume are 
based on AMOS 17, the most up-to-date version of the program at the 
time this book went to press. During the production process, however, I 
was advised by J. Arbuckle (personal communication, May 2, 2009) that 
although a testing of Beta Version 18 had been initiated, the only changes 
to the program involved (a) the appearance of path diagrams, which 
are now in color by default, and (b) the rearrangement of a few dialog 
boxes. The text and statistical operations remain unchanged. Although 
it is  inevitable that newer versions of the program will emerge at some 
later date, the basic principles covered in this second edition of the book 
remain fully intact.

This book is specifically designed and written for readers who may 
have little to no knowledge of either SEM or the AMOS program. It is 
intended neither as a text on the topic of SEM, nor as a comprehensive 
review of the many statistical and graphical functions available in the 
AMOS program. Rather, my primary aim is to provide a practical guide to 
SEM using the AMOS Graphical approach. As such, readers are “walked 
through” a diversity of SEM applications that include confirmatory factor 
analytic and full latent variable models tested on a wide variety of data 
(single/multi-group; normal/non-normal; complete/incomplete; continu-
ous/categorical), and based on either the analysis of covariance structures, 
or on the analysis of mean and covariance structures. Throughout the 
book, each application is accompanied by numerous illustrative “how to” 
examples related to particular procedural aspects of the program. In sum-
mary, each application is accompanied by the following:

statement of the hypothesis to be tested•	
schematic representation of the model under study•	
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xvi Preface

full explanation bearing on related AMOS Graphics input path •	
diagrams
full explanation and interpretation of related AMOS text output •	
files
published reference from which the application is drawn•	
illustrated use and function associated with a wide variety of icons •	
and pull-down menus used in building, testing, and evaluating 
models, as well as for other important data management tasks
data file upon which the application is based•	

This second edition of the book differs in several important ways from 
the initial version. First, the number of applications has been expanded to 
include the testing of: a multitrait-multimethod model, a latent growth 
curve model, and a second-order model based on categorical data using 
a Bayesian statistical approach. Second, where the AMOS program has 
implemented an updated, albeit alternative approach to model analyses, I 
have illustrated both procedures. A case in point is the automated multi-
group approach to tests for equivalence, which was incorporated into the 
program after the first edition of this book was published (see Chapter 7). 
Third, given ongoing discussion in the literature concerning the analysis 
of continuous versus categorical data derived from the use of Likert scaled 
measures, I illustrate analysis of data from the same instrument based on 
both approaches to the analysis (see Chapter 5). Fourth, the AMOS text 
output files are now imbedded within cell format; as a result, the location 
of some material (as presented in this second edition) may differ from 
that of former versions of the program. Fifth, given that most users of the 
AMOS program wish to work within a graphical mode, all applications 
are based on this interface. Thus, in contrast to the first edition of this 
book, I do not include example input files for AMOS based on a program-
ming approach (formerly called AMOS Basic). Finally, all data files used 
for the applications in this book can be downloaded from http://www.
psypress.com/sem-with-amos.

The book is divided into five major sections; Section I comprises two 
introductory chapters. In Chapter 1, I introduce you to the fundamental 
concepts underlying SEM methodology. I also present you with a general 
overview of model specification within the graphical interface of AMOS 
and, in the process, introduce you to basic AMOS graphical notation. 
Chapter 2 focuses solely on the AMOS program. Here, I detail the key ele-
ments associated with building and executing model files.

Section II is devoted to applications involving single-group analyses; 
these include two first-order confirmatory factor analytic (CFA) models, 
one second-order CFA model, and one full latent variable model. The 
first-order CFA applications demonstrate testing for the validity of the 
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theoretical structure of a construct (Chapter 3) and the factorial struc-
ture of a measuring instrument (Chapter 4). The second-order CFA model 
bears on the factorial structure of a measuring instrument (Chapter 5). 
The final single-group application tests for the validity of an empirically-
derived causal structure (Chapter 6).

In Section III, I present three applications related to multiple-group 
analyses with two rooted in the analysis of covariance structures, and one 
in the analysis of mean and covariance structures. Based on the analysis 
of only covariance structures, I show you how to test for measurement 
and structural equivalence across groups with respect to a measuring 
instrument (Chapter 7) and to a causal structure (Chapter 9). Working 
from a somewhat different perspective that encompasses the analysis of 
mean and covariance structures, I first outline the basic concepts associ-
ated with the analysis of latent mean structures and then continue on to 
illustrate the various stages involved in testing for latent mean differences 
across groups.

Section IV presents two models that are increasingly becoming of 
substantial interest to practitioners of SEM. In addressing the issue of 
construct validity, Chapter 10 illustrates the specification and testing of a 
multitrait-multimethod (MTMM) model. Chapter 11 focuses on longitu-
dinal data and presents a latent growth curve (LGC) model that is tested 
with and without a predictor variable included.

Section V comprises the final two chapters of the book and addresses 
critically important issues associated with SEM methodology. Chapter 12 
focuses on the issue of non-normal data and illustrates the use of boot-
strapping as an aid to determining appropriate parameter estimated 
values. Chapter 13, on the other hand, addresses the issue of missing (or 
incomplete) data. Following a lengthy review of the literature on this topic 
as it relates to SEM, I walk you through an application based on the direct 
maximum likelihood (ML) approach, the method of choice in the AMOS 
program.

 Although there are now several SEM texts available, the present book 
distinguishes itself from the rest in a number of ways. First, it is the only 
book to demonstrate, by application to actual data, a wide range of con-
firmatory factor analytic and full latent variable models drawn from pub-
lished studies and accompanied by a detailed explanation of each model 
tested and the resulting output file. Second it is the only book to incorporate 
applications based solely on the AMOS program. Third, it is the only book 
to literally “walk” readers through: (a) model specification, estimation, 
evaluation, and post hoc modification decisions and processes associated 
with a variety of applications, (b) competing approaches to the analysis of 
multiple-group and categorical/continuous data based AMOS model files, 
and (c) the use of diverse icons and drop-down menus to initiate a variety 
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of analytic, data management, editorial, and visual AMOS procedures. 
Overall, this volume serves well as a companion book to the AMOS user’s 
guide (Arbuckle, 2007), as well as to any statistics textbook devoted to the 
topic of SEM.

In writing a book of this nature, it is essential that I have access to a 
number of different data sets capable of lending themselves to various 
applications. To facilitate this need, all examples presented throughout 
the book are drawn from my own research. Related journal references are 
cited for readers who may be interested in a more detailed discussion of 
theoretical frameworks, aspects of the methodology, and/or substantive 
issues and findings. It is important to emphasize that, although all appli-
cations are based on data that are of a social/psychological nature, they 
could just as easily have been based on data representative of the health 
sciences, leisure studies, marketing, or a multitude of other disciplines; 
my data, then, serve only as one example of each application. Indeed, I 
urge you to seek out and examine similar examples as they relate to other 
subject areas.

Although I have now written five of these introductory books on the 
application of SEM pertinent to particular programs (Byrne, 1989, 1994c, 
1998, 2001, 2006), I must say that each provides its own unique learning 
experience. Without question, such a project demands seemingly end-
less time and is certainly not without its frustrations. However, thanks 
to the ongoing support of Jim Arbuckle, the program’s author, such dif-
ficulties were always quickly resolved. In weaving together the textual, 
graphical, and statistical threads that form the fabric of this book, I hope 
that I have provided my readers with a comprehensive understanding 
of basic concepts and applications of SEM, as well as with an extensive 
working knowledge of the AMOS program. Achievement of this goal has 
necessarily meant the concomitant juggling of word processing, “grab-
ber”, and statistical programs in order to produce the end result. It has 
been an incredible editorial journey, but one that has left me feeling truly 
enriched for having had yet another wonderful learning experience. I can 
only hope that, as you wend your way through the chapters of this book, 
you will find the journey to be equally exciting and fulfilling.
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Structural equation models
The basics

Structural equation modeling (SEM) is a statistical methodology that 
takes a confirmatory (i.e., hypothesis-testing) approach to the analysis of 
a structural theory bearing on some phenomenon. Typically, this theory 
represents “causal” processes that generate observations on multiple vari-
ables (Bentler, 1988). The term structural equation modeling conveys two 
important aspects of the procedure: (a) that the causal processes under 
study are represented by a series of structural (i.e., regression) equations, 
and (b) that these structural relations can be modeled pictorially to enable 
a clearer conceptualization of the theory under study. The hypothesized 
model can then be tested statistically in a simultaneous analysis of the 
entire system of variables to determine the extent to which it is consis-
tent with the data. If goodness-of-fit is adequate, the model argues for the 
plausibility of postulated relations among variables; if it is inadequate, the 
tenability of such relations is rejected.

Several aspects of SEM set it apart from the older generation of mul-
tivariate procedures. First, as noted above, it takes a confirmatory rather 
than an exploratory approach to the data analysis (although aspects of the 
latter can be addressed). Furthermore, by demanding that the pattern of 
intervariable relations be specified a priori, SEM lends itself well to the 
analysis of data for inferential purposes. By contrast, most other multi-
variate procedures are essentially descriptive by nature (e.g., exploratory 
factor analysis), so that hypothesis testing is difficult, if not impossible. 
Second, whereas traditional multivariate procedures are incapable of either 
assessing or correcting for measurement error, SEM provides explicit esti-
mates of these error variance parameters. Indeed, alternative methods 
(e.g., those rooted in regression, or the general linear model) assume that 
error(s) in the explanatory (i.e., independent) variables vanish(es). Thus, 
applying those methods when there is error in the explanatory variables 
is tantamount to ignoring error, which may lead, ultimately, to serious 
inaccuracies—especially when the errors are sizeable. Such mistakes are 
avoided when corresponding SEM analyses (in general terms) are used. 
Third, although data analyses using the former methods are based on 
observed measurements only, those using SEM procedures can incorporate 
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4 Structural equation modeling with AMOS 2nd edition

both unobserved (i.e., latent) and observed variables. Finally, there are no 
widely and easily applied alternative methods for modeling multivari-
ate relations, or for estimating point and/or interval indirect effects; these 
important features are available using SEM methodology.

Given these highly desirable characteristics, SEM has become a popu-
lar methodology for nonexperimental research, where methods for testing 
theories are not well developed and ethical considerations make experi-
mental design unfeasible (Bentler, 1980). Structural equation modeling 
can be utilized very effectively to address numerous research problems 
involving nonexperimental research; in this book, I illustrate the most 
common applications (e.g., Chapters 3, 4, 6, 7, and 9), as well as some that 
are less frequently found in the substantive literatures (e.g., Chapters 5, 
8, 10, 11, 12, and 13). Before showing you how to use the AMOS program 
(Arbuckle, 2007), however, it is essential that I first review key concepts 
associated with the methodology. We turn now to their brief explanation.

Basic concepts
Latent versus observed variables

In the behavioral sciences, researchers are often interested in studying 
theoretical constructs that cannot be observed directly. These abstract 
phenomena are termed latent variables, or factors. Examples of latent vari-
ables in psychology are self-concept and motivation; in sociology, power-
lessness and anomie; in education, verbal ability and teacher expectancy; 
and in economics, capitalism and social class.

Because latent variables are not observed directly, it follows that they 
cannot be measured directly. Thus, the researcher must operationally 
define the latent variable of interest in terms of behavior believed to repre-
sent it. As such, the unobserved variable is linked to one that is observable, 
thereby making its measurement possible. Assessment of the behavior, 
then, constitutes the direct measurement of an observed variable, albeit 
the indirect measurement of an unobserved variable (i.e., the underlying 
construct). It is important to note that the term behavior is used here in the 
very broadest sense to include scores on a particular measuring instru-
ment. Thus, observation may include, for example, self-report responses 
to an attitudinal scale, scores on an achievement test, in vivo observa-
tion scores representing some physical task or activity, coded responses 
to interview questions, and the like. These measured scores (i.e., measure-
ments) are termed observed or manifest variables; within the context of SEM 
methodology, they serve as indicators of the underlying construct which 
they are presumed to represent. Given this necessary bridging process 
between observed variables and unobserved latent variables, it should 
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now be clear why methodologists urge researchers to be circumspect in 
their selection of assessment measures. Although the choice of psycho-
metrically sound instruments bears importantly on the credibility of 
all study findings, such selection becomes even more critical when the 
observed measure is presumed to represent an underlying construct.1

Exogenous versus endogenous latent variables

It is helpful in working with SEM models to distinguish between latent 
variables that are exogenous and those that are endogenous. Exogenous 
latent variables are synonymous with independent variables; they “cause” 
fluctuations in the values of other latent variables in the model. Changes 
in the values of exogenous variables are not explained by the model. 
Rather, they are considered to be influenced by other factors external to 
the model. Background variables such as gender, age, and socioeconomic 
status are examples of such external factors. Endogenous latent variables 
are synonymous with dependent variables and, as such, are influenced 
by the exogenous variables in the model, either directly or indirectly. 
Fluctuation in the values of endogenous variables is said to be explained 
by the model because all latent variables that influence them are included 
in the model specification.

The factor analytic model

The oldest and best-known statistical procedure for investigating relations 
between sets of observed and latent variables is that of factor analysis. In 
using this approach to data analyses, the researcher examines the covaria-
tion among a set of observed variables in order to gather information on 
their underlying latent constructs (i.e., factors). There are two basic types 
of factor analyses: exploratory factor analysis (EFA) and confirmatory fac-
tor analysis (CFA). We turn now to a brief description of each.

Exploratory factor analysis (EFA) is designed for the situation where 
links between the observed and latent variables are unknown or uncer-
tain. The analysis thus proceeds in an exploratory mode to determine how, 
and to what extent, the observed variables are linked to their underlying 
factors. Typically, the researcher wishes to identify the minimal number 
of factors that underlie (or account for) covariation among the observed 
variables. For example, suppose a researcher develops a new instrument 
designed to measure five facets of physical self-concept (e.g., Health, Sport 
Competence, Physical Appearance, Coordination, and Body Strength). 
Following the formulation of questionnaire items designed to measure 
these five latent constructs, he or she would then conduct an EFA to deter-
mine the extent to which the item measurements (the observed variables) 
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6 Structural equation modeling with AMOS 2nd edition

were related to the five latent constructs. In factor analysis, these relations 
are represented by factor loadings. The researcher would hope that items 
designed to measure health, for example, exhibited high loadings on that 
factor, and low or negligible loadings on the other four factors. This fac-
tor analytic approach is considered to be exploratory in the sense that 
the researcher has no prior knowledge that the items do, indeed, mea-
sure the intended factors. (For texts dealing with EFA, see Comrey, 1992; 
Gorsuch, 1983; McDonald, 1985; Mulaik, 1972. For informative articles on 
EFA, see Byrne, 2005a; Fabrigar, Wegener, MacCallum, & Strahan, 1999; 
MacCallum, Widaman, Zhang, & Hong, 1999; Preacher & MacCallum, 
2003; Wood, Tataryn, & Gorsuch, 1996.)

In contrast to EFA, confirmatory factor analysis (CFA) is appropriately 
used when the researcher has some knowledge of the underlying latent 
variable structure. Based on knowledge of the theory, empirical research, 
or both, he or she postulates relations between the observed measures 
and the underlying factors a priori and then tests this hypothesized 
structure statistically. For example, based on the example cited earlier, 
the researcher would argue for the loading of items designed to measure 
sport competence self-concept on that specific factor, and not on the health, 
physical appearance, coordination, or body strength self-concept dimen-
sions. Accordingly, a priori specification of the CFA model would allow 
all sport competence self-concept items to be free to load on that factor, 
but restricted to have zero loadings on the remaining factors. The model 
would then be evaluated by statistical means to determine the adequacy 
of its goodness-of-fit to the sample data. (For more detailed discussions of 
CFA, see, e.g., Bollen, 1989a; Byrne, 2003, 2005b; Long, 1983a.)

In summary, then, the factor analytic model (EFA or CFA) focuses 
solely on how, and the extent to which, the observed variables are linked 
to their underlying latent factors. More specifically, it is concerned with 
the extent to which the observed variables are generated by the under-
lying latent constructs and thus strength of the regression paths from 
the factors to the observed variables (the factor loadings) are of primary 
interest. Although interfactor relations are also of interest, any regres-
sion structure among them is not considered in the factor analytic model. 
Because the CFA model focuses solely on the link between factors and 
their measured variables, within the framework of SEM, it represents 
what has been termed a measurement model.

The full latent variable model

In contrast to the factor analytic model, the full latent variable (LV) model 
allows for the specification of regression structure among the latent vari-
ables. That is to say, the researcher can hypothesize the impact of one 
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latent construct on another in the modeling of causal direction. This 
model is termed full (or complete) because it comprises both a measure-
ment model and a structural model: the measurement model depicting 
the links between the latent variables and their observed measures (i.e., 
the CFA model), and the structural model depicting the links among the 
latent variables themselves.

A full LV model that specifies direction of cause from one direction 
only is termed a recursive model; one that allows for reciprocal or feed-
back effects is termed a nonrecursive model. Only applications of recursive 
 models are considered in the present book.

General purpose and process of statistical modeling

Statistical models provide an efficient and convenient way of describing 
the latent structure underlying a set of observed variables. Expressed 
either diagrammatically or mathematically via a set of equations, such 
models explain how the observed and latent variables are related to one 
another.

Typically, a researcher postulates a statistical model based on his or 
her knowledge of the related theory, on empirical research in the area of 
study, or on some combination of both. Once the model is specified, the 
researcher then tests its plausibility based on sample data that comprise all 
observed variables in the model. The primary task in this model-testing 
procedure is to determine the goodness-of-fit between the hypothesized 
model and the sample data. As such, the researcher imposes the structure 
of the hypothesized model on the sample data, and then tests how well 
the observed data fit this restricted structure. Because it is highly unlikely 
that a perfect fit will exist between the observed data and the hypoth-
esized model, there will necessarily be a differential between the two; this 
differential is termed the residual. The model-fitting process can therefore 
be summarized as follows:

 Data = Model + Residual

where

Data represent score measurements related to the observed variables as 
derived from persons comprising the sample.

Model represents the hypothesized structure linking the observed vari-
ables to the latent variables and, in some models, linking particular 
latent variables to one another.

Residual represents the discrepancy between the hypothesized model 
and the observed data.
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8 Structural equation modeling with AMOS 2nd edition

In summarizing the general strategic framework for testing structural 
 equation models, Jöreskog (1993) distinguished among three scenarios 
which he termed strictly confirmatory (SC), alternative models (AM), and model 
generating (MG). In the strictly confirmatory scenario, the researcher postu-
lates a single model based on theory, collects the appropriate data, and then 
tests the fit of the hypothesized model to the sample data. From the results 
of this test, the researcher either rejects or fails to reject the model; no fur-
ther modifications to the model are made. In the alternative models case, the 
researcher proposes several alternative (i.e., competing) models, all of which 
are grounded in theory. Following analysis of a single set of empirical data, 
he or she selects one model as most appropriate in representing the sample 
data. Finally, the model-generating scenario represents the case where the 
researcher, having postulated and rejected a theoretically derived model on 
the basis of its poor fit to the sample data, proceeds in an exploratory (rather 
than confirmatory) fashion to modify and reestimate the model. The pri-
mary focus, in this instance, is to locate the source of misfit in the model and 
to determine a model that better describes the sample data. Jöreskog (1993) 
noted that, although respecification may be either theory or data driven, the 
ultimate objective is to find a model that is both substantively meaningful 
and statistically well fitting. He further posited that despite the fact that 
“a model is tested in each round, the whole approach is model generating, 
rather than model testing” (Jöreskog, 1993, p. 295).

Of course, even a cursory review of the empirical literature will clearly 
show the MG situation to be the most common of the three scenarios, and 
for good reason. Given the many costs associated with the collection of 
data, it would be a rare researcher indeed who could afford to terminate 
his or her research on the basis of a rejected hypothesized model! As a 
consequence, the SC case is not commonly found in practice. Although the 
AM approach to modeling has also been a relatively uncommon practice, 
at least two important papers on the topic (e.g., MacCallum, Roznowski, 
& Necowitz, 1992; MacCallum, Wegener, Uchino, & Fabrigar, 1993) have 
precipitated more activity with respect to this analytic strategy.

Statistical theory related to these model-fitting processes can be found (a) 
in texts devoted to the topic of SEM (e.g., Bollen, 1989a; Kline, 2005; Loehlin, 
1992; Long, 1983b; Raykov & Marcoulides, 2000; Saris & Stronkhurst, 1984; 
Schumacker & Lomax, 2004), (b) in edited books devoted to the topic 
(e.g., Bollen & Long, 1993; Cudeck, du Toit, & Sörbom, 2001; Hoyle, 1995b; 
Marcoulides & Schumacker, 1996), and (c) in methodologically oriented 
journals such as British Journal of Mathematical and Statistical Psychology, 
Journal of Educational and Behavioral Statistics, Multivariate Behavioral Research, 
Psychological Methods, Psychometrika, Sociological Methodology, Sociological 
Methods & Research, and Structural Equation Modeling.
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Chapter one: Structural equation models 9

The general structural equation model
Symbol notation

Structural equation models are schematically portrayed using particular 
configurations of four geometric symbols—a circle (or ellipse), a square (or 
rectangle), a single-headed arrow, and a double-headed arrow. By conven-
tion, circles (or ellipses;  ) represent unobserved latent factors, squares 
(or rectangles;  ) represent observed variables, single-headed arrows 
(→) represent the impact of one variable on another, and double-headed 
arrows (↔) represent covariances or correlations between pairs of vari-
ables. In building a model of a particular structure under study, research-
ers use these symbols within the framework of four basic configurations, 
each of which represents an important component in the analytic pro-
cess. These configurations, each accompanied by a brief description, are 
as follows:

•	  Path coefficient for regression of an observed variable 
onto an unobserved latent variable (or factor)

•	  Path coefficient for regression of one factor onto another 
factor

•	  Measurement error associated with an observed variable
•	  Residual error in the prediction of an unobserved factor

The path diagram

Schematic representations of models are termed path diagrams because 
they provide a visual portrayal of relations which are assumed to hold 
among the variables under study. Essentially, as you will see later, a 
path diagram depicting a particular SEM model is actually the graphical 
equivalent of its mathematical representation whereby a set of equations 
relates dependent variables to their explanatory variables. As a means 
of illustrating how the above four symbol configurations may represent 
a particular causal process, let me now walk you through the simple 
model shown in Figure 1.1, which was formulated using AMOS Graphics 
(Arbuckle, 2007).

In reviewing the model shown in Figure 1.1, we see that there are two 
unobserved latent factors, math self-concept (MSC) and math achieve-
ment (MATH), and five observed variables—three are considered to mea-
sure MSC (SDQMSC; APIMSC; SPPCMSC), and two to measure MATH 
(MATHGR; MATHACH). These five observed variables function as indi-
cators of their respective underlying latent factors.
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10 Structural equation modeling with AMOS 2nd edition

Associated with each observed variable is an error term (err1–err5), and 
with the factor being predicted (MATH), a residual term (resid1);2 there is 
an important distinction between the two. Error associated with observed 
variables represents measurement error, which reflects on their adequacy 
in measuring the related underlying factors (MSC; MATH). Measurement 
error derives from two sources: random measurement error (in the psy-
chometric sense) and error uniqueness, a term used to describe error vari-
ance arising from some characteristic that is considered to be specific (or 
unique) to a particular indicator variable. Such error often represents non-
random (or systematic) measurement error. Residual terms represent error in 
the prediction of endogenous factors from exogenous factors. For example, 
the residual term shown in Figure 1.1 represents error in the prediction of 
MATH (the endogenous factor) from MSC (the exogenous factor).

It is worth noting that both measurement and residual error terms, in 
essence, represent unobserved variables. Thus, it seems perfectly reason-
able that, consistent with the representation of factors, they too should be 
enclosed in circles. For this reason, then, AMOS path diagrams, unlike 
those associated with most other SEM programs, model these error vari-
ables as circled enclosures by default.3

In addition to symbols that represent variables, certain others are 
used in path diagrams to denote hypothesized processes involving the 
entire system of variables. In particular, one-way arrows represent struc-
tural regression coefficients and thus indicate the impact of one variable 
on another. In Figure 1.1, for example, the unidirectional arrow pointing 
toward the endogenous factor, MATH, implies that the exogenous factor 
MSC (math self-concept) “causes” math achievement (MATH).4 Likewise, 
the three unidirectional arrows leading from MSC to each of the three 
observed variables (SDQMSC, APIMSC, and SPPCMSC), and those lead-
ing from MATH to each of its indicators, MATHGR and MATHACH, 
suggest that these score values are each influenced by their respective 
underlying factors. As such, these path coefficients represent the mag-
nitude of expected change in the observed variables for every change 
in the related latent variable (or factor). It is important to note that these 

SPPCMSC

APIMSC

SDQMSCerr1
MATHGR

MATHACH
err2

err3

MSC MATH

resid1

err4

err5

Figure 1.1 A general structural equation model.
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observed variables typically represent subscale scores (see, e.g., Chapter 8),  
item scores (see, e.g., Chapter 4), item pairs (see, e.g., Chapter 3), and/or 
carefully formulated item parcels (see, e.g., Chapter 6).

The one-way arrows pointing from the enclosed error terms  
(err1–err5) indicate the impact of measurement error (random and unique) 
on the observed variables, and from the residual (resid1), the impact of 
error in the prediction of MATH. Finally, as noted earlier, curved two-
way arrows represent covariances or correlations between pairs of vari-
ables. Thus, the bidirectional arrow linking err1 and err2, as shown in 
Figure 1.1, implies that measurement error associated with SDQMSC is 
correlated with that associated with APIMSC.

Structural equations

As noted in the initial paragraph of this chapter, in addition to lending 
themselves to pictorial description via a schematic presentation of the 
causal processes under study, structural equation models can also be 
represented by a series of regression (i.e., structural) equations. Because  
(a) regression equations represent the influence of one or more variables 
on another, and (b) this influence, conventionally in SEM, is symbolized 
by a single-headed arrow pointing from the variable of influence to the 
variable of interest, we can think of each equation as summarizing the 
impact of all relevant variables in the model (observed and unobserved) 
on one specific variable (observed or unobserved). Thus, one relatively 
simple approach to formulating these equations is to note each variable 
that has one or more arrows pointing toward it, and then record the sum-
mation of all such influences for each of these dependent variables.

To illustrate this translation of regression processes into structural 
equations, let’s turn again to Figure 1.1. We can see that there are six vari-
ables with arrows pointing toward them; five represent observed vari-
ables (SDQMSC, APIMSC, SPPCMSC, MATHGR, and MATHACH), and 
one represents an unobserved variable (or factor; MATH). Thus, we know 
that the regression functions symbolized in the model shown in Figure 1.1 
can be summarized in terms of six separate equation-like representations 
of linear dependencies as follows:

 MATH = MSC + resid1

 SDQMSC = MSC + err1

 APIMSC = MSC + err2
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12 Structural equation modeling with AMOS 2nd edition

 SPPCMSC = MSC + err3

 MATHGR = MATH + err4

 MATHACH = MATH + err5

Nonvisible components of a model

Although, in principle, there is a one-to-one correspondence between the 
schematic presentation of a model and its translation into a set of struc-
tural equations, it is important to note that neither one of these model 
representations tells the whole story; some parameters critical to the esti-
mation of the model are not explicitly shown and thus may not be obvious 
to the novice structural equation modeler. For example, in both the path 
diagram and the equations just shown, there is no indication that the vari-
ances of the exogenous variables are parameters in the model; indeed, 
such parameters are essential to all structural equation models. Although 
researchers must be mindful of this inadequacy of path diagrams in build-
ing model input files related to other SEM programs, AMOS facilitates 
the specification process by automatically incorporating the estimation of 
variances by default for all independent factors.

Likewise, it is equally important to draw your attention to the specified 
nonexistence of certain parameters in a model. For example, in Figure 1.1, 
we detect no curved arrow between err4 and err5, which suggests the 
lack of covariance between the error terms associated with the observed 
variables MATHGR and MATHACH. Similarly, there is no hypothesized 
covariance between MSC and resid1; absence of this path addresses the 
common, and most often necessary, assumption that the predictor (or 
exogenous) variable is in no way associated with any error arising from 
the prediction of the criterion (or endogenous) variable. In the case of both 
examples cited here, AMOS, once again, makes it easy for the novice struc-
tural equation modeler by automatically assuming these specifications to 
be nonexistent. (These important default assumptions will be addressed 
in chapter 2, where I review the specifications of AMOS models and input 
files in detail.)

Basic composition

The general SEM model can be decomposed into two submodels: a mea-
surement model, and a structural model. The measurement model defines 
relations between the observed and unobserved variables. In other words, 
it provides the link between scores on a measuring instrument (i.e., the 
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observed indicator variables) and the underlying constructs they are 
designed to measure (i.e., the unobserved latent variables). The measure-
ment model, then, represents the CFA model described earlier in that it 
specifies the pattern by which each measure loads on a particular factor. 
In contrast, the structural model defines relations among the unobserved 
variables. Accordingly, it specifies the manner by which particular latent 
variables directly or indirectly influence (i.e., “cause”) changes in the val-
ues of certain other latent variables in the model.

For didactic purposes in clarifying this important aspect of SEM 
composition, let’s now examine Figure 1.2, in which the same model pre-
sented in Figure 1.1 has been demarcated into measurement and struc-
tural components.

Considered separately, the elements modeled within each rectangle 
in Figure 1.2 represent two CFA models. The enclosure of the two factors 
within the ellipse represents a full latent variable model and thus would 
not be of interest in CFA research. The CFA model to the left of the dia-
gram represents a one-factor model (MSC) measured by three observed 
variables (SDQMSC, APIMSC, and SPPCMSC), whereas the CFA model 
on the right represents a one-factor model (MATH) measured by two 
observed variables (MATHGR-MATHACH). In both cases, the regression 
of the observed variables on each factor, and the variances of both the 

SPPCMSC

APIMSC

SDQMSCerr1
MATHGR

MATHACH
err2

err3

MSC MATH

resid1

Measurement (CFA) Model

err4

err5

Structural Model

Figure 1.2 A general structural equation model demarcated into measurement 
and structural components.
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factor and the errors of measurement are of primary interest; the error 
covariance would be of interest only in analyses related to the CFA model 
bearing on MSC.

It is perhaps important to note that, although both CFA models 
described in Figure 1.2 represent first-order factor models, second-order 
and higher order CFA models can also be analyzed using AMOS. Such 
hierarchical CFA models, however, are less commonly found in the lit-
erature (Kerlinger, 1984). Discussion and application of CFA models in 
the present book are limited to first- and second-order models only. (For 
a more comprehensive discussion and explanation of first- and second-
order CFA models, see Bollen, 1989a; Kerlinger.)

The formulation of covariance and mean structures

The core parameters in structural equation models that focus on the 
analysis of covariance structures are the regression coefficients, and  
the variances and covariances of the independent variables; when the 
focus extends to the analysis of mean structures, the means and inter-
cepts also become central parameters in the model. However, given that 
sample data comprise observed scores only, there needs to be some inter-
nal mechanism whereby the data are transposed into parameters of the 
model. This task is accomplished via a mathematical model representing 
the entire system of variables. Such representation systems can and do 
vary with each SEM computer program. Because adequate explanation 
of the way in which the AMOS representation system operates demands 
knowledge of the program’s underlying statistical theory, the topic goes 
beyond the aims and intent of the present volume. Thus, readers inter-
ested in a comprehensive explanation of this aspect of the analysis of 
covariance structures are referred to the following texts (Bollen, 1989a; 
Saris & Stronkhorst, 1984) and monographs (Long, 1983b).

In this chapter, I have presented you with a few of the basic con-
cepts associated with SEM. As with any form of communication, one 
must first understand the language before being able to understand 
the message conveyed, and so it is in comprehending the specifica-
tion of SEM models. Now that you are familiar with the basic concepts 
underlying structural equation modeling, we can turn our attention to 
the specification and analysis of models within the framework of the 
AMOS program. In the next chapter, then, I provide you with details 
regarding the specification of models within the context of the graphi-
cal interface of the AMOS program. Along the way, I show you how to 
use the Toolbox feature in building models, review many of the drop-
down menus, and detail specified and illustrated components of three 
basic SEM models. As you work your way through the applications 
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included in this book, you will become increasingly more confident 
both in your understanding of SEM and in using the AMOS program. 
So, let’s move on to Chapter 2 and a more comprehensive look at SEM 
modeling with AMOS.

Endnotes
 1. Throughout the remainder of the book, the terms latent, unobserved, or unmea-

sured variable are used synonymously to represent a hypothetical construct 
or factor; the terms observed, manifest, and measured variable are also used 
interchangeably.

 2. Residual terms are often referred to as disturbance terms.
 3. Of course, this default can be overridden by selecting Visibility from the 

Object Properties dialog box (to be described in chapter 2).
 4. In this book, a cause is a direct effect of a variable on another within the con-

text of a complete model. Its magnitude and direction are given by the partial 
regression coefficient. If the complete model contains all relevant influences 
on a given dependent variable, its causal precursors are correctly specified. 
In practice, however, models may omit key predictors, and may be misspeci-
fied, so that it may be inadequate as a “causal model” in the philosophical 
sense.
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Using the AMOS program
The purpose of this chapter is to introduce you to the general format of 
the AMOS program and to its graphical approach to the analysis of con-
firmatory factor analytic and full structural equation models. The name, 
AMOS, is actually an acronym for analysis of moment structures or, in other 
words, the analysis of mean and covariance structures.

An interesting aspect of AMOS is that, although developed within 
the Microsoft Windows interface, the program allows you to choose from 
three different modes of model specification. Using the one approach, 
AMOS Graphics, you work directly from a path diagram; using the oth-
ers, AMOS VB.NET and AMOS C#, you work directly from equation 
statements. The choice of which AMOS method to use is purely arbitrary 
and bears solely on how comfortable you feel in working within either a 
graphical interface or a more traditional programming interface. In the 
second edition of this book, I focus only on the graphical approach. For 
information related to the other two interfaces, readers are referred to the 
user’s guide (Arbuckle, 2007).

Without a doubt, for those of you who enjoy working with draw pro-
grams, rest assured that you will love working with AMOS Graphics! All 
drawing tools have been carefully designed with SEM conventions in 
mind—and there is a wide array of them from which to choose. With the 
simple click of either the left or right mouse buttons, you will be amazed 
at how quickly you can formulate a publication-quality path diagram. On 
the other hand, for those of you who may feel more at home with specify-
ing your model using an equation format, the AMOS VB.NET and/or C# 
options are very straightforward and easily applied.

Regardless of which mode of model input you choose, all options 
related to the analyses are available from drop-down menus, and all 
estimates derived from the analyses can be presented in text format. In 
addition, AMOS Graphics allows for the estimates to be displayed graphi-
cally in a path diagram. Thus, the choice between these two approaches to 
SEM really boils down to one’s preferences regarding the specification of 
models. In this chapter, I introduce you to the various features of AMOS 
Graphics by illustrating the formulation of input specification related to 
three simple models. As with all subsequent chapters in the book, I walk 
you through the various stages of each featured application.
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18 Structural equation modeling with AMOS 2nd edition

Let’s turn our attention now to a review of the various components 
and characteristics of AMOS Graphics as they relate to the specification of 
three basic models—a first-order CFA model (Example 1), a second-order 
CFA model (Example 2), and a full SEM model (Example 3).

Working with AMOS Graphics: Example 1
Initiating AMOS Graphics

To initiate AMOS Graphics, you will need, first, to follow the usual 
Windows procedure as follows: Start → Programs → AMOS (Version) 
→ AMOS Graphics. In the present case, all work is based on AMOS ver-
sion 17.1 Shown in Figure 2.1 is the complete AMOS selection screen with 
which you will be presented. As you can see, it is possible to get access 
to various aspects of previous work. Initially, however, you will want to 
click on AMOS Graphics. Alternatively, you can always place the AMOS 
Graphics icon on your desktop.

Once you are in AMOS Graphics, you will see the opening screen and 
toolbox shown in Figure 2.2. On the far right of this screen you will see a 
blank rectangle; this space provides for the drawing of your path diagram. 
The large highlighted icon at the top of the center section of the screen, 
when activated, presents you with a view of the input path diagram (i.e., the 
model specification). The companion icon to the right of the first one allows 
you to view the output path diagram, that is, the path diagram with the 
parameter estimates included. Of course, given that we have not yet con-
ducted any analyses, this output icon is grayed out and not highlighted.

AMOS modeling tools

AMOS provides you with all the tools that you will ever need in cre-
ating and working with SEM path diagrams. Each tool is represented 

Figure 2.1 AMOS startup menu.
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by an icon (or button) and performs one particular function; there are  
42 icons from which to choose. Immediately upon opening the program, 
you see the toolbox containing each of these icons, with the blank work-
space located to its right. A brief descriptor of each icon is presented in 
Table 2.1.

In reviewing Table 2.1, you will note that, although the majority of 
the icons are associated with individual components of the path diagram  
(e.g.,   ), or with the path diagram as a whole (e.g.,   ), others relate 
either to the data (e.g.,  ) or to the analyses (e.g.,  ). Don’t worry about 
trying to remember this smorgasbord of tools as simply holding the mouse 
pointer stationary over an icon is enough to trigger the pop-up label that 
identifies its function. As you begin working with AMOS Graphics in 
drawing a model, you will find two tools in particular, the Indicator Icon 

 and the Error Icon  , to be worth their weight in gold! Both of these 
icons reduce, tremendously, the tedium of trying to align all multiple 
indicator variables together with their related error variables in an effort 
to produce an aesthetically pleasing diagram. As a consequence, it is now 
possible to structure a path diagram in just a matter of minutes.

Now that you have had a chance to peruse the working tools of AMOS 
Graphics, let’s move on to their actual use in formulating a path diagram. 
For your first experience in using this graphical interface, we’ll recon-
struct the hypothesized CFA model shown in Figure 2.3.

Figure 2.2 Opening AMOS Graphics screen showing palette of tool icons.
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(continued)

Table 2.1 Selected Drawing Tools in AMOS Graphics

Rectangle Icon: Draws observed (measured) variables

Oval Icon: Draws unobserved (latent, unmeasured) variables

Indicator Icon: Draws a latent variable or adds an indicator variable

Path Icon: Draws a regression path

Covariance Icon: Draws covariances

Error Icon: Adds an error/uniqueness variable to an existing 
observed variable

Title Icon: Adds figure caption to path diagram

Variable List (I) Icon: Lists variables in the model

Variable List (II) Icon: Lists variables in the data set

Single Selection Icon: Selects one object at a time

Multiple Selection Icon: Selects all objects

Multiple Deselection Icon: Deselects all objects

Duplicate Icon: Makes multiple copies of selected object(s)

Move Icon: Moves selected object(s) to an alternate location

Erase Icon: Deletes selected object(s)

Shape Change Icon: Alters shape of selected object(s)

Rotate Icon: Changes orientation of indicator variables

Reflect Icon: Reverses direction of indicator variables

Move Parameter Icon: Moves parameter values to alternate location

Scroll Icon: Repositions path diagram to another part of the screen

Touch-Up Icon: Enables rearrangement of arrows in path diagram
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Table 2.1 Selected Drawing Tools in AMOS Graphics (Continued)

Data File Icon: Selects and reads data file(s)

Analysis Properties Icon: Requests additional calculations

Calculate Estimates Icon: Calculates default and/or requested 
estimates

Clipboard Icon: Copies path diagram to Windows clipboard

Text Output Icon: View output in textual format

Save Diagram Icon: Saves the current path diagram

Object Properties Icon: Defines properties of variables

Drag Properties Icon: Transfers selected properties of an object to one 
or more target objects

Preserve Symmetry Icon: Maintains proper spacing among a selected 
group of objects

Zoom Select Icon: Magnifies selected portion of a path diagram

Zoom-In Icon: Views smaller area of path diagram

Zoom-Out Icon: Views larger area of path diagram

Zoom Page Icon: Shows entire page on the screen

Fit-to-Page Icon: Resizes path diagram to fit within page boundary

Loupe Icon: Examines path diagram with a loupe (magnifying glass)

Bayesian Icon: Enables analyses based on Bayesian statistics

Multiple Group Icon: Enables analyses of multiple groups

Print Icon: Prints selected path diagram

Undo (I) Icon: Undoes previous change

Undo (II) Icon: Undoes previous undo

Specification Search: Enables modeling based on a specification 
search
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The hypothesized model

The CFA structure in Figure 2.3 comprises four self-concept (SC) factors—
academic SC (ASC), social SC (SSC), physical SC (PSC), and emotional 
SC (ESC). Each SC factor is measured by three observed variables, the 
reliability of which is influenced by random measurement error, as indi-
cated by the associated error term. Each of these observed variables is 
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Figure 2.3 Hypothesized first-order CFA model.
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regressed onto its respective factor. Finally, the four factors are shown to 
be intercorrelated.

Drawing the path diagram

To initiate the drawing of a new model, click on File, shown at the top 
of the opening AMOS screen, and then select New from the drop-down 
menu. Although the File drop-down menu is typical of most Windows 
programs, I include it here in Figure 2.4 in the interest of completeness.

Now, we’re ready to draw our path diagram. The first tool which you 
will want to use is what I call the “million-dollar” (indicator) icon (see 
Table 2.1) because it performs several functions. Click on this icon to acti-
vate it and then, with the cursor in the blank drawing space provided, hold 
down the left mouse button and draw an ellipse by dragging it slightly to 
create an ellipse. If you prefer your factor model to show the factors as 
circles, rather than ellipses, just don’t perform the dragging action. When 
working with the icons, you need to release the mouse button after you 
have finished working with a particular function. Figure 2.5 illustrates the 
completed ellipse shape with the Indicator Icon  still activated. Of course, 
you could also have activated the Draw Unobserved Variables Icon  and 
achieved the same result.2

Now that we have the ellipse representing the first latent factor, the 
next step is to add the indicator variables. To do so, we click on the Indicator 
Icon, after which the mouse pointer changes to resemble the Indicator Icon. 
Now, move the Indicator Icon image to the center of the ellipse, at which time 
its outer rim becomes highlighted in red. Next, click on the unobserved 
variable. In viewing Figure 2.6, you will see that this action produces a 

Figure 2.4 The AMOS Graphics file menu.
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rectangle (representing a single observed variable), an arrow pointing 
from the latent factor to the observed variable (representing a regression 
path), and a small circle with an arrow pointing toward the observed vari-
able (representing a measurement error term).3 Again, you will see that 
the Indicator Icon, when activated, appears in the center of the ellipse. This, 
of course, occurs because that’s where the cursor is pointing.

Figure 2.5 Drawing an ellipse to represent an unobserved latent variable (or 
factor).

Figure 2.6 Adding the first error term to the latent factor.
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Note, however, that the hypothesized model (see Figure 2.3) we are 
endeavoring to structure schematically shows each of its latent factors 
to have three, rather than only one, indicator variable. These additional 
indicators are easily added to the diagram by two simple clicks of the left 
mouse button while the Indicator Icon is activated. In other words, with 
this icon activated, each time that the left mouse button is clicked, AMOS 
Graphics will produce an additional indicator variable, each with its 
associated error term. Figures 2.7 and 2.8 show the results of having made 
one and two additional clicks, respectively, to the left mouse button.

In reviewing the hypothesized model again, we note that the three 
indicator variables for each latent factor are oriented to the left of the 
ellipse rather than to the top, as is currently the case in our diagram here. 
This task is easily accomplished by means of rotation. One very simple 
way of accomplishing this reorientation is to click the right mouse button 
while the Indicator Icon is activated. Figure 2.9 illustrates the outcome of 
this clicking action.

As you can see from the dialog box, there are a variety of options 
related to this path diagram from which you can choose. At this time, 
however, we are only interested in the Rotate option. Moving down the 
menu and clicking with the left mouse button on Rotate will activate  
the Rotate function and assign the related label to the cursor. When the cur-
sor is moved to the center of the oval and the left mouse button clicked, the 
three indicator variables, in combination with their error terms and links 

Figure 2.7 Adding the second error term to the latent factor.
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to the underlying factor, will move 45 degrees clockwise, as illustrated 
in Figure 2.10; two additional clicks will produce the desired orientation 
shown in Figure 2.11. Alternatively, we could have activated the Rotate Icon 

 and then clicked on the ellipse to obtain the same effect.
Now that we have one factor structure completed, it becomes 

a simple task of duplicating this configuration in order to add three 
additional ones to the model. However, before we can duplicate, we 
must first group all components of this structure so that they operate 
as a single unit. This is easily accomplished by clicking on the Multiple 
Selection Icon , after which you will observe that the outline of all 
factor structure components is now highlighted in blue, thereby indi-
cating that they now operate as a unit. As with other drawing tasks 
in AMOS, duplication of this structure can be accomplished either by 
clicking on the Duplicate Icon  or by right-clicking on the model and 
activating the menu, as shown in Figure 2.9. In both cases, you will see 
that with each click and drag of the left mouse button, the cursor takes 
on the form of a photocopier and generates one copy of the factor struc-
ture. This action is illustrated in Figure 2.12.

Once you have the number of copies that you need, it’s just a matter 
of dragging each duplicated structure into position. Figure 2.13 illustrates 
the four factor structures lined up vertically to replicate the hypothesized 

Figure 2.8 The latent factor with three indicator variables and their associated 
error terms.
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CFA model. Note the insert of the Move Icon  in this figure; it is used 
to reposition objects from one location to another. In the present case, it 
was used to move the four duplicated factor structures such that they 
were aligned vertically. In composing your own SEM diagrams, you may 
wish to move an entire path diagram for better placement on a page. This 
realignment is made possible with the Move Icon, but don’t forget to acti-
vate the Multiple Selection Icon illustrated earlier.4

Now we need to add the factor covariances to our path diagram. 
Illustrated in Figure 2.14 is the addition of a covariance between the first 
and fourth factors; these double-headed arrows are drawn by clicking on 
the Covariance Icon . Once this button has been activated, you then click 
on one object (in this case, the first latent factor), and drag the arrow to 
the second object of interest (in this case, the fourth latent factor). The 

Figure 2.9 Pop-up menu activated by click of the right mouse button.
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process is then repeated for each of the remaining specified covariances. 
Yes, gone are the days of spending endless hours trying to draw multiple 
arrows that look at least somewhat similar in their curvature! Thanks to 
AMOS Graphics, these double-headed arrows are drawn perfectly every 
single time.

At this point, our path diagram, structurally speaking, is complete; 
all that is left for us to do is to label each of the variables. If you look back 
at Figure 2.9, in which the mouse right-click menu is displayed, you will 
see a selection termed Object Properties at the top of the menu. This is the 
option you need in order to add text to a path diagram. To initiate this 

Figure 2.10 The latent factor with indicator variables and error terms rotated 
once.

Figure 2.11 The reflected latent factor structure shown in Figure 2.10.
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process, point the cursor at the object in need of the added text,  right-click 
to bring up the View menu, and, finally, left-click on Object Properties, 
which activates the dialog box shown in Figure 2.15. Of import here are 
the five different tabs at the top of the dialog box. We select the Text tab, 
which enables us to specify a font size and style specific to the variable 
name to be entered. For purposes of illustration, I have simply entered 
the label for the first latent variable (ASC) and selected a font size of 12 
with regular font style. All remaining labeling was completed in the same 
manner. Alternatively, you can display the list of variables in the data and 
then drag each variable to its respective rectangle.

The path diagram related to the hypothesized CFA model is now 
complete. However, before leaving AMOS Graphics, I wish to show 
you the contents of four pull-down menus made available to you on 
your drawing screen. (For a review of possible menus, see Figure 2.2.) 
The first and third drop-down menus shown in Figure 2.16 relate 
in some way to path diagrams. In reviewing these Edit and Diagram 
menus, you will quickly see that they serve as alternatives to the use 
of drawing tools, some of which I have just demonstrated in the recon-
struction of Figure 2.3. Thus, for those of you who may prefer to work 

Figure 2.12 Duplicating the first factor structure.
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with  pull-down menus, rather than with drawing tool buttons, AMOS 
Graphics provides you with this option. As its name implies, the View 
menu allows you to peruse various features associated with the vari-
ables and/or parameters in the path diagram. Finally, from the Analyze 
menu, you can calculate estimates (i.e., execute a job), manage groups 
and/or models, and conduct a multiple group analysis and varied other 
types of analyses.

By now, you should have a fairly good understanding of how AMOS 
Graphics works. Of course, because learning comes from doing, you will 
most assuredly want to practice on your own some of the techniques illus-
trated here. For those of you who are still uncomfortable working with 
draw programs, take solace in the fact that I too harbored such fears until 
I worked with AMOS. Rest assured that once you have decided to take 
the plunge into the world of draw programs, you will be amazed at how 
simple the techniques are, and this is especially true of AMOS Graphics!

Figure 2.13 Moving the four factor structures to be aligned vertically.
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Understanding the basic components of model 1

Recall from Chapter 1 that the key parameters to be estimated in a CFA 
model are the regression coefficients (i.e., factor loadings), the factor and 
error variances, and, in some models (as is the case with Figure 2.3), the 
factor covariances. Given that the latent and observed variables are spec-
ified in the model in AMOS Graphics, the program automatically esti-
mates the factor and error variances. In other words, variances associated 
with these specified variables are freely estimated by default. However, 
defaults related to parameter covariances are governed by the WYSIWYG 
rule—what you see is what you get. That is, if a covariance path is not 
included in the path diagram, then this parameter will not be estimated 
(by default); if it is included, then its value will be estimated.

One extremely important caveat in working with structural equation 
models is to always tally the number of parameters in the model to be esti-
mated prior to running the analyses. This information is critical to your 

Figure 2.14 Drawing the first factor covariance double-headed arrow.
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Figure 2.15 The object properties dialog box: text tab open.

Figure 2.16 Four selected AMOS Graphics pull-down menus.
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knowledge of whether or not the model that you are testing is statistically 
identified. Thus, as a prerequisite to the discussion of identification, let’s 
count the number of parameters to be estimated for the model portrayed 
in Figure 2.3. From a review of the figure, we can ascertain that there are 12 
regression coefficients (factor loadings), 16 variances (12 error variances and 4 
factor variances), and 6 factor covariances. The 1’s assigned to one of each set 
of regression path parameters represent a fixed value of 1.00; as such, these 
parameters are not estimated. In total, then, there are 30 parameters to be 
estimated for the CFA model depicted in Figure 2.3. Let’s now turn to a brief 
discussion of the important concept of model (or statistical) identification.

The concept of model identification

Model identification is a complex topic that is difficult to explain in non-
technical terms. Although a thorough explanation of the identification 
principle exceeds the scope of the present book, it is not critical to the 
reader’s understanding and use of the book. Nonetheless, because some 
insight into the general concept of the identification issue will undoubt-
edly help you to better understand why, for example, particular param-
eters are specified as having fixed values, I attempt now to give you a 
brief, nonmathematical explanation of the basic idea underlying this con-
cept. Essentially, I address only the so-called t-rule, one of several tests 
associated with identification. I encourage you to consult the following 
texts for a more comprehensive treatment of the topic: Bollen (1989a),  
Kline (2005), Long (1983a, 1983b), and Saris and Stronkhorst (1984). I also 
recommend a very clear and readable description of the identification issue 
in a book chapter by MacCallum (1995), and of its underlying assumptions 
in Hayashi and Marcoulides (2006).

In broad terms, the issue of identification focuses on whether or not 
there is a unique set of parameters consistent with the data. This question 
bears directly on the transposition of the variance–covariance matrix of 
observed variables (the data) into the structural parameters of the model 
under study. If a unique solution for the values of the structural parameters 
can be found, the model is considered to be identified. As a consequence, 
the parameters are considered to be estimable and the model therefore 
testable. If, on the other hand, a model cannot be identified, it indicates that 
the parameters are subject to arbitrariness, thereby implying that different 
parameter values define the same model; such being the case, attainment 
of consistent estimates for all parameters is not possible, and, thus, the 
model cannot be evaluated empirically. By way of a simple example, the 
process would be conceptually akin to trying to determine unique val-
ues for X and Y, when the only information you have is that X + Y = 15.  
Generalizing this example to covariance structure analysis, then, the 
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model identification issue focuses on the extent to which a unique set of 
values can be inferred for the unknown parameters from a given covari-
ance matrix of analyzed variables that is reproduced by the model.

Structural models may be just-identified, overidentified, or underiden-
tified. A just-identified model is one in which there is a one-to-one cor-
respondence between the data and the structural parameters. That is to 
say, the number of data variances and covariances equals the number of 
parameters to be estimated. However, despite the capability of the model 
to yield a unique solution for all parameters, the just-identified model is 
not scientifically interesting because it has no degrees of freedom and 
therefore can never be rejected. An overidentified model is one in which 
the number of estimable parameters is less than the number of data points 
(i.e., variances and covariances of the observed variables). This situation 
results in positive degrees of freedom that allow for rejection of the model, 
thereby rendering it of scientific use. The aim in SEM, then, is to specify 
a model and such that it meets the criterion of overidentification. Finally, 
an underidentified model is one in which the number of parameters to 
be estimated exceeds the number of variances and covariances (i.e., data 
points). As such, the model contains insufficient information (from the 
input data) for the purpose of attaining a determinate solution of param-
eter estimation; that is, an infinite number of solutions are possible for an 
underidentified model.

Reviewing the CFA model in Figure 2.3, let’s now determine how 
many data points we have to work with (i.e., how much information do we 
have with respect to our data?). As noted above, these constitute the vari-
ances and covariances of the observed variables; with p variables, there 
are p(p + 1) / 2 such elements. Given that there are 12 observed variables, 
this means that we have 12(12 + 1) / 2 = 78 data points. Prior to this discus-
sion of identification, we determined a total of 30 unknown parameters. 
Thus, with 78 data points and 30 parameters to be estimated, we have an 
overidentified model with 48 degrees of freedom.

However, it is important to note that the specification of an overi-
dentified model is a necessary, but not sufficient, condition to resolve the 
identification problem. Indeed, the imposition of constraints on particular 
parameters can sometimes be beneficial in helping the researcher to attain 
an overidentified model. An example of such a constraint is illustrated in 
Chapter 5 with the application of a second-order CFA model.

Linked to the issue of identification is the requirement that every latent 
variable have its scale determined. This constraint arises because these 
variables are unobserved and therefore have no definite metric scale; it 
can be accomplished in one of two ways. The first approach is tied to spec-
ification of the measurement model whereby the unmeasured latent vari-
able is mapped onto its related observed indicator variable. This scaling 
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requisite is satisfied by constraining to some nonzero value  (typically, 1.0) 
one factor-loading parameter in each congeneric5 set of loadings. This 
constraint holds for both independent and dependent latent variables. In 
reviewing Figure 2.3, then, this means that for one of the three regression 
paths leading from each SC factor to a set of observed indicators, some 
fixed value should be specified; this fixed parameter is termed a reference 
variable.6 With respect to the model in Figure 2.3, for example, the scale 
has been established by constraining to a value of 1.0 the third parameter 
in each set of observed variables. Recall that AMOS Graphics automati-
cally assigned this value when the Indicator Icon was activated and used 
to add the first indicator variable and its error term to the model. It is 
important to note, however, that although AMOS Graphics assigned the 
value of “1” to the lower regression path of each set, this assignment can 
be changed simply by clicking on the right mouse button and selecting 
Object Properties from the pop-up menu. (This modification will be illus-
trated with the next example.)

With a better idea of important aspects of the specification of a CFA 
model in general, specification using AMOS Graphics in particular, and 
basic notions associated with model identification, we continue on our 
walk through two remaining models reviewed in this chapter.

Working with AMOS Graphics: Example 2
In this second example of model specification, we examine the second-
order model displayed in Figure 2.17.

The hypothesized model

In our previous factor analytic model, we had four factors (ASC, SSC, PSC, 
and ESC) which operated as independent variables; each could be consid-
ered to be one level, or one unidirectional arrow, away from the observed 
variables. Such factors are termed first-order factors. However, it may be the 
case that the theory argues for some higher level factor that is considered 
accountable for the lower order factors. Basically, the number of levels or 
unidirectional arrows that the higher order factor is removed from the 
observed variables determines whether a factor model is considered to 
be second order, third order, or some higher order; only a second-order 
model will be examined here.

Although the model schematically portrayed in Figure 2.17 has 
essentially the same first-order factor structure as the one shown in 
Figure 2.3, it differs in that a higher order general self-concept (GSC) 
factor is hypothesized as accounting for, or explaining, all variance and 
covariance related to the first-order factors. As such, GSC is termed the 
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second-order factor. It is important to take particular note of the fact 
that GSC does not have its own set of measured indicators; rather, it is 
linked indirectly to those measuring the lower order factors. Let’s now 
take a closer look at the parameters to be estimated for this  second-order 
model.
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Figure 2.17 Hypothesized second-order CFA model.
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I wish to draw your attention to several aspects of the second-order 
model shown in Figure 2.17. First, note the presence of single-headed 
arrows leading from the second-order factor (GSC) to each of the first-
order factors (ASC to ESC). These regression paths represent second-order 
factor loadings, and all are freely estimated. Recall, however, that for rea-
sons linked to the model identification issue, a constraint must be placed 
either on one of the regression paths or on the variance of an independent 
factor, as these parameters cannot be estimated simultaneously. Because 
the impact of GSC on each of the lower order SC factors is of primary 
interest in second-order CFA models, the variance of the higher order fac-
tor is typically constrained to equal 1.0, thereby leaving the second-order 
factor loadings to be freely estimated.

A second aspect of this second-order model, perhaps requiring 
amplification, is the initial appearance that the first-order factors oper-
ate as both independent and dependent variables. This situation, how-
ever, is not so, as variables can serve as either independent or dependent 
variables in a model, but not as both.7 Because the first-order factors 
function as dependent variables, it follows that their variances and cova-
riances are no longer estimable parameters in the model; such variation 
is presumed to be accounted for by the higher order factor. In compar-
ing Figures 2.3 and 2.17, then, you will note that there are no longer 
double-headed curved arrows linking the first-order SC factors, thereby 
indicating that neither the factor covariances nor variances are to be 
estimated.

Finally, the prediction of each of the first-order factors from the sec-
ond-order factor is presumed not to be without error. Thus, a residual 
error term is associated with each of the lower level factors.

As a first step in determining whether this second-order model is 
identified, we now sum the number of parameters to be estimated; we 
have 8 first-order regression coefficients, 4 second-order regression coef-
ficients, 12 measurement error variances, and 4 residual error terms, 
making a total of 28. Given that there are 78 pieces of information in the 
sample variance–covariance matrix, we conclude that this model is identi-
fied with 50 degrees of freedom.

Before leaving this identification issue, however, a word of caution 
is in order. With complex models in which there may be more than one 
level of latent variable structures, it is wise to visually check each level 
separately for evidence that identification has been attained. For example, 
although we know from our initial CFA model that the first-order level 
is identified, it is quite possible that the second-order level may indeed 
be underidentified. Because the first-order factors function as indicators 
of (i.e., the input data for) the second-order factor, identification is easy 
to assess. In the present model, we have four factors, thereby giving us  
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10 (4 × 5 / 2) pieces of information from which to formulate the  
parameters of the higher order structure. According to the model depicted 
in Figure 2.17, we wish to estimate 8 parameters (4 regression paths;  
4 residual error variances), thus leaving us with 2 degrees of freedom, and 
an overidentified model. However, suppose that we only had three first-or-
der factors. We would then be left with a just-identified model at the upper 
level as a consequence of trying to estimate 6 parameters from 6 (3[3 + 1] / 2)  
pieces of information. In order for such a model to be tested, additional 
constraints would need to be imposed (see, e.g., Chapter 5). Finally, let’s 
suppose that there were only two first-order factors; we would then have 
an underidentified model since there would be only three pieces of infor-
mation, albeit four parameters to be estimated. Although it might still be 
possible to test such a model, given further restrictions on the model, the 
researcher would be better advised to reformulate his or her model in 
light of this problem (see Rindskopf & Rose, 1988).

Drawing the path diagram

Now that we have dispensed with the necessary “heavy stuff,” let’s move 
on to creating the second-order model shown in Figure 2.17 which will 
serve as the specification input for AMOS Graphics. We can make life 
easy for ourselves here simply by pulling up our first-order model (see 
Figure 2.3). Because the first-order level of our new model will remain the 
same as that shown in Figure 2.3, the only thing that needs to be done by 
way of modification is to remove all the factor covariance arrows. This 
task, of course, can be accomplished in AMOS in one of two ways: either 
by activating the Erase Icon  and clicking on each double-headed arrow, 
or by placing the cursor on each double-headed arrow individually and 
then right-clicking on the mouse, which produces the menu shown ear-
lier. Once you select the Erase option on the menu, the Erase Icon will 
automatically activate and the cursor converts to a claw-like X symbol. 
Simply place the X over the component that you wish to delete and left-
click; the targeted component disappears. As illustrated in Figure 2.18, 
the covariance between ASC and SSC has already been deleted, with the 
covariance between ASC and PSC being the next one to be deleted. For 
both methods of erasure, AMOS automatically highlights the selected 
parameter in red.

Having removed all the double-headed arrows representing the fac-
tor covariances from the model, our next task is to draw the ellipse repre-
senting the higher order factor of GSC. We do this by activating the Oval 
Icon , which, for me, resulted in an ellipse with solid red fill. However, 
for publication purposes, you will likely want the ellipse to be clear. To 
accomplish this, place the cursor over the upper ellipse and right-click on 
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the mouse, which again will produce a menu from which you select Object 
Properties. At this point, your model should resemble the one shown in 
Figure 2.19. Once in this dialog box, click on the Color tab, scroll down to 
Fill style, and then choose Transparent, as illustrated in Figure 2.20. Note 
that you can elect to set this color option as default by clicking on the Set 
Default tab to the right.

Continuing with our path diagram, we now need to add the second-
order factor regression paths. We accomplish this task by first activating 
the Path Icon  and then, with the cursor clicked on the central underside 
of the GSC ellipse, dragging the cursor up to where it touches the central 
right side of the ASC ellipse. Figure 2.21 illustrates this drawing process 
with respect to the first path; the process is repeated for each of the other 
three paths.

Figure 2.18 Erasing the factor covariance double-headed arrows.

RT63727.indb   39 7/6/09   7:25:08 PM



40 Structural equation modeling with AMOS 2nd edition

Because each of the first-order factors is now a dependent variable 
in the model, we need to add the residual error term associated with  
the prediction of each by the higher order factor of GSC. To do so, we 
activate the Error Icon  and then click with the left mouse button on 
each of the ellipses representing the first-order factors. Figure 2.22 illus-
trates implementation of the residual error term for ASC. In this instance, 
only one click was completed, thereby leaving the residual error term in 
its current position (note the solid fill as I had not yet set the default for 
transparent fill). However, if we clicked again with the left mouse button, 
the error term would move 45 degrees clockwise, as shown in Figure 2.23; 
with each subsequent click, the error term would continue to be moved 
clockwise in a similar manner.

The last task in completing our model is to label the higher order fac-
tor, as well as each of the residual error terms. Recall that this process is 
accomplished by first placing the cursor on the object of interest (in this 
case, the first residual error term) and then clicking with the right mouse 

Figure 2.19 Building the second-order structure: the higher order latent factor.

RT63727.indb   40 7/6/09   7:25:09 PM



Chapter two: Using the AMOS program 41

button. This action releases the pop-up menu shown in Figure 2.19, from 
which we select Object Properties, which, in turn, yields the dialog box dis-
played in Figure 2.24. To label the first error term, we again select the Text 
tab and then add the text “res1”; this process is then repeated for each of 
the remaining residual error terms.

Working with AMOS Graphics: Example 3
For our last example, we’ll examine a full SEM model. Recall from Chapter 
1 that, in contrast to a first-order CFA model which comprises only a mea-
surement component, and a second-order CFA model for which the higher 
order level is represented by a reduced form of a structural model, the full 
structural equation model encompasses both a measurement and a struc-
tural model. Accordingly, the full model embodies a system of variables 
whereby latent factors are regressed on other factors as dictated by theory, 
as well as on the appropriate observed measures. In other words, in the 
full SEM model, certain latent variables are connected by one-way arrows, 
the directionality of which reflects hypotheses bearing on the causal struc-
ture of variables in the model. We turn now to the hypothesized model.

Figure 2.20 Removing colored fill from the higher order latent factor.

RT63727.indb   41 7/6/09   7:25:11 PM



42 Structural equation modeling with AMOS 2nd edition

The hypothesized model

For a clearer conceptualization of full SEM models, let’s examine the rela-
tively simple structure presented in Figure 2.25. The structural compo-
nent of this model represents the hypothesis that a child’s self-confidence 
(SCONF) derives from his or her self-perception of overall social compe-
tence (social SC, or SSC), which, in turn, is influenced by the child’s per-
ception of how well he or she gets along with family members (SSCF), 
as well as with his or her peers at school (SSCS). The measurement com-
ponent of the model shows each of the SC factors to have three indicator 
measures, and the self-confidence factor to have two.

Turning first to the structural part of the model, we can see that there 
are four factors; the two independent factors (SSCF; SSCS) are postulated 
as being correlated with each other, as indicated by the curved two-way 
arrow joining them, but they are linked to the other two factors by a series 

Figure 2.21 Building the second-order structure: the regression paths.
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of regression paths, as indicated by the unidirectional arrows. Because 
the factors SSC and SCONF have one-way arrows pointing at them, they 
are easily identified as dependent variables in the model. Residual errors 
associated with the regression of SSC on both SSCF and SSCS, and the 
regression of SCONF on SSC, are captured by the disturbance terms res1 
and res2, respectively. Finally, because one path from each of the two inde-
pendent factors (SSCF; SSCS) to their respective indicator variables is fixed 
to 1.0, their variances can be freely estimated; variances of the dependent 
variables (SSC; SCONF), however, are not parameters in the model.

By now, you likely feel fairly comfortable in interpreting the measure-
ment portion of the model, and so substantial elaboration is not necessary 
here. As usual, associated with each observed measure is an error term, 
the variance of which is of interest. (Because the observed measures tech-
nically operate as dependent variables in the model, as indicated by the 
arrows pointing toward them, their variances are not estimated.) Finally, 

Figure 2.22 Building the second-order structure: the residual errors.
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Figure 2.23 Changing the orientation of the residual error term.

Figure 2.24 Labeling the second-order factor and residual errors: object proper-
ties dialog box’s text tab open.
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to establish the scale for each unmeasured factor in the model (and for 
purposes of statistical identification), one parameter in each set of regres-
sion paths is fixed to 1.0; recall, however, that path selection for the impo-
sition of this constraint was purely arbitrary.

For this, our last example, let’s again determine if we have an iden-
tified model. Given that we have 11 observed measures, we know that 
we have 66 (11[11 + 1] / 2) pieces of information from which to derive  
the parameters of the model. Counting up the unknown parameters in the 
model, we see that we have 26 parameters to be estimated: 7 measurement 
regression paths, 3 structural regression paths, 2 factor variances, 11 error 
variances, 2 residual error variances, and 1 covariance. We therefore have 
40 (66 – 26) degrees of freedom and, thus, an overidentified model.

Drawing the path diagram

Given what you now already know about drawing path diagrams within 
the framework of AMOS Graphics, you likely would encounter no dif-
ficulty in reproducing the hypothesized model shown in Figure 2.25. 
Therefore, rather than walk you through the entire drawing process related 
to this model, I’ll take the opportunity here to demonstrate two additional 
features of the drawing tools that have either not yet been illustrated or 
been illustrated only briefly. The first of these makes use of the Object 
Properties Icon  in reorienting the assignment of fixed “1” values that 
the program automatically assigns to the factor-loading regression paths. 
Turning to Figure 2.25, focus on the SSCS factor in the lower left corner 
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Figure 2.25 Hypothesized full structural equation model.
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of the diagram. Note that the fixed path for this factor has been assigned 
to the one  associated with the prediction of QSSCS3. For purposes of 
illustration, let’s reassign the fixed value of “1” to the first regression path 
(QSSCS1). To carry out this reorientation process, we can either right-click 
on the mouse, or click on the Object Properties Icon, which in either case 
activates the related dialog box; we focus here on the latter. In using this 
approach, we click first on the icon and then on the parameter of inter-
est (QSSCS3, in this instance), which then results in the parameter value 
becoming enclosed in a broken line box (see Figure 2.26). Once in the dia-
log box, we click on the Parameter tab at the top, which then generates the 
dialog box shown in Figure 2.26. Note that the regression weight is listed 
as “1.” To remove this weight, we simply delete the value. To reassign this 
weight, we subsequently click on the first regression path (QSSCS1) and 
then on the Object Properties Icon. This time, of course, the Object Properties 
dialog box indicates no regression weight (see Figure 2.27) and all we 
need to do is to add a value of “1,” as shown in Figure 2.26 for indicator 
variable QSSCS3. Implementation of these last two actions yields a modi-
fied version of the originally hypothesized model (Figure 2.25), which is 
schematically portrayed in Figure 2.28.

The second feature that I wish to demonstrate involves the reorienta-
tion of error terms, usually for purposes of improving the appearance 

Figure 2.26 Reassigning a fixed regression weight: the existing parameter.
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Figure 2.27 Reassigning a fixed regression weight: the target parameter.
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Figure 2.28 Reproduced model with rotated residual error terms and reassigned 
fixed “1” regression weight.
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of the path diagram. Although I briefly mentioned this procedure and 
showed the resulting reorientation with respect to Example 2, I consider 
it important to expand on my earlier illustration as it is a technique that 
comes in handy when you are working with path diagrams that may 
have many variables in the model. With the residual error terms in the 
12 o’clock position, as in Figure 2.25, we’ll continue to click with the left 
mouse button until they reach the 10 o’clock position shown in Figure 2.29. 
Each click of the mouse results in a 45-degree clockwise move of the 
residual error term, with eight clicks thus returning us to the 12 o’clock 
position; the position indicated in Figure 2.29 resulted from seven clicks 
of the mouse.

In Chapter 1, I introduced you to the basic concepts underlying SEM, 
and in the present chapter, I extended this information to include the issue 
of model identification. In this chapter, specifically, I have endeavored to 
show you the AMOS Graphics approach in specifying particular models 
under study. I hope that I have succeeded in giving you a fairly good idea 
of the ease by which AMOS makes this process possible. Nonetheless, it 
is important for me to emphasize that, although I have introduced you 
to a wide variety of the program’s many features, I certainly have not 
exhausted the total range of possibilities, as to do so would far exceed the 
intended scope of the present book. Now that you are fairly well equipped 
with knowledge of the conceptual underpinning of SEM and the basic 
functioning of the AMOS program, let’s move on to the remaining chap-
ters, where we explore the analytic processes involved in SEM using 
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Figure 2.29 Rotating the residual error terms.
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AMOS Graphics. We turn now to Chapter 3, which features an application 
bearing on a CFA model.

Endnotes
 1. It is important to note that a Beta Version 18 was developed after I had com-

pleted the writing of this second edition. However, I have been advised by 
J. Arbuckle, developer of the AMOS program, that the only changes made to 
Version 18 are: (a) the appearance of path diagrams, which are now in color 
by default, and (b) the rearrangement of a few dialog boxes. The text and sta-
tistical operations remain unchanged (J. Arbuckle, personal communication, 
May 2, 2009).

 2. Throughout the book, the terms click and drag are used within the usual 
Windows framework. As such, click means to press and release the mouse 
button in a single, fairly rapid motion. In contrast, drag means to press the 
mouse button and hold it down while simultaneously moving the mouse.

 3. The 1’s that are automatically assigned to selected single arrows by the pro-
gram relate to the issue of model identification, a topic which is addressed 
later in the chapter.

 4. Whenever you see that various components in the path diagram are colored 
blue, this indicates that they are currently selected as a group of objects. As 
such, they will be treated as one object should you wish to reorient them in 
any way. In contrast, single parameters, when selected by a point-and-click 
action, become highlighted in red.

 5. A set of measures is said to be “congeneric” if each measure in the set purports 
to assess the same construct, except for errors of measurement (Jöreskog, 
1971a). For example, as indicated in Figure 2.1, SDQASC1, SDQASC2, and 
SDQASC3 all serve as measures of academic SC; they therefore represent a 
congeneric set of indicator variables.

 6. Although the decision as to which parameter to constrain is purely an arbi-
trary one, the measure having the highest reliability is recommended, if this 
information is known; the value to which the parameter is constrained is also 
arbitrary.

 7. In SEM, once a variable has an arrow pointing at it, thereby targeting it as a 
dependent variable, it maintains this status throughout the analyses.
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threechapter 

Testing for the factorial validity 
of a theoretical construct
(First-order CFA model)

Our first application examines a first-order CFA model designed to test 
the multidimensionality of a theoretical construct. Specifically, this appli-
cation tests the hypothesis that self-concept (SC), for early adolescents 
(grade 7), is a multidimensional construct composed of four factors—
general SC (GSC), academic SC (ASC), English SC (ESC), and mathemat-
ics SC (MSC). The theoretical underpinning of this hypothesis derives 
from the hierarchical model of SC proposed by Shavelson, Hubner, and 
Stanton (1976). The example is taken from a study by Byrne and Worth 
Gavin (1996) in which four hypotheses related to the Shavelson et al. 
(1976) model were tested for three groups of children—preadolescents 
(grade 3), early adolescents (grade 7), and late adolescents (grade 11). 
Only tests bearing on the multidimensional structure of SC, as they 
relate to grade 7 children, are relevant to the present chapter. This study 
followed from earlier work in which the same four-factor structure of 
SC was tested for adolescents (see Byrne & Shavelson, 1986), and was 
part of a larger study that focused on the structure of social SC (Byrne 
& Shavelson, 1996). For a more extensive discussion of the substantive 
issues and the related findings, readers should refer to the original Byrne 
and Worth Gavin article.

The hypothesized model
At issue in this first application is the plausibility of a multidimensional 
SC structure for early adolescents. Although numerous studies have sup-
ported the multidimensionality of the construct for grade 7 children, oth-
ers have counterargued that SC is less differentiated for children in their 
pre- and early adolescent years (e.g., Harter, 1990). Thus, the argument 
could be made for a two-factor structure comprising only GSC and ASC. 
Still others postulate that SC is a unidimensional structure so that all facets 
of SC are embodied within a single SC construct (GSC). (For a review of 
the literature related to these issues, see Byrne, 1996.) The task presented 
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to us here, then, is to test the original hypothesis that SC is a four-factor 
structure comprising a general component (GSC), an academic compo-
nent (ASC), and two subject-specific components (ESC; MSC) against two 
alternative hypotheses: (a) that SC is a two-factor structure comprising 
GSC and ASC, and (b) that SC is a one-factor structure in which there is 
no distinction between general and academic SCs.

We turn now to an examination and testing of each of these hypotheses.

Hypothesis 1: Self-concept is a four-factor structure
The model to be tested in Hypothesis 1 postulates a priori that SC is a 
four-factor structure composed of general SC (GSC), academic SC (ASC), 
English SC (ESC), and math SC (MSC); it is presented schematically in 
Figure 3.1.

Before any discussion of how we might go about testing this model, 
let’s take a few minutes first to dissect the model and list its component 
parts as follows:

 1. There are four SC factors, as indicated by the four ellipses labeled 
GSC, ASC, ESC, and MSC.

 2. The four factors are intercorrelated, as indicated by the two-headed 
arrows.

 3. There are 16 observed variables, as indicated by the 16 rectangles 
(SDQ2N01–SDQ2N43); they represent item pairs from the General, 
Academic, Verbal, and Math SC subscales of the Self Description 
Questionnaire II (Marsh, 1992a).

 4. The observed variables load on the factors in the following pattern: 
SDQ2N01–SDQ2N37 load on Factor 1, SDQ3N04–SDQ2N40 load 
on Factor 2, SDQ2N10–SDQ2N46 load on Factor 3, and SDQ2N07–
SDQ2N43 load on Factor 4.

 5. Each observed variable loads on one and only one factor.
 6. Errors of measurement associated with each observed variable 

(err01–err43) are uncorrelated.

Summarizing these observations, we can now present a more formal 
description of our hypothesized model. As such, we state that the CFA 
model presented in Figure 3.1 hypothesizes a priori that

 1. SC responses can be explained by four factors: GSC, ASC, ESC, and 
MSC.

 2. Each item-pair measure has a nonzero loading on the SC factor that 
it was designed to measure (termed a target loading), and a zero load-
ing on all other factors (termed nontarget loadings).
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Figure 3.1 Hypothesized four-factor CFA model of self-concept.
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 3. The four SC factors, consistent with the theory, are correlated.
 4. Error/uniquenesses1 associated with each measure are uncorrelated.

Another way of conceptualizing the hypothesized model in Figure 3.1 
is within a matrix framework as presented in Table 3.1. Thinking about 
the model components in this format can be very helpful because it is con-
sistent with the manner by which the results from SEM analyses are com-
monly reported in program output files. Although AMOS, as well as other 
Windows-based programs, also provides users with a graphical output, 
the labeled information is typically limited to the estimated values and 
their standard errors. The tabular representation of our model in Table 3.1 
shows the pattern of parameters to be estimated within the framework 
of three matrices: the factor-loading matrix, the factor variance–covari-
ance matrix, and the error variance–covariance matrix. For purposes of 
model identification and latent variable scaling (see Chapter 2), you will 
note that the first of each congeneric2 set of SC measures in the factor-
loading matrix is set to 1.0; all other parameters are freely estimated (as 
represented by the dollar [$] sign). Likewise, as indicated in the variance–
covariance matrix, all parameters are to be freely estimated. Finally, in the 
error–uniqueness matrix, only the error variances are estimated; all error 
covariances are presumed to be zero.

Modeling with AMOS Graphics
Provided with these two perspectives of the hypothesized model, let’s 
now move on to the actual testing of the model. We’ll begin by examining 
the route to model specification, data specification, and the calculation of 
parameter estimates within the framework of AMOS Graphics.

Model specification

The beauty of working with the AMOS Graphics interface is that all we 
need to do is to provide the program with a hypothesized model; in the 
present case, we use the one portrayed in Figure 3.1. Given that I demon-
strated most of the commonly used drawing tools, and their application, 
in Chapter 2, there is no need for me to walk you through the construc-
tion of this model here. Likewise, construction of hypothesized models 
presented throughout the remainder of the book will not be detailed. 
Nonetheless, I take the opportunity, wherever possible, to illustrate a few 
of the other drawing tools or features of AMOS Graphics not specifically 
demonstrated earlier. Accordingly, in the first edition of this book, I noted 
two tools that, in combination, I had found to be invaluable in working 
on various parts of a model; these were the Zoom-In  and the Scroll  
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tools. To use this approach, you would click first on the Zoom-In icon, with 
each click enlarging the model a little more than the previous view. Once 
you had achieved sufficient magnification, you would then click on the 
Scroll icon to move around the entire diagram. Clicking on the Zoom-Out 
tool  would then return the diagram to the normal view. Although these 
drawing tools still operate in the more recent version of AMOS, their tasks 
are somewhat redefined. That is, you can now zoom in on specific objects 
of a diagram by simply using the mouse wheel. Furthermore, the mouse 
wheel can also be used to adjust the magnification of the Loupe tool . 
Although the Scroll tool still enables you to move the entire path diagram 
around, you can also use the scrollbars that appear when the diagram 
extends beyond the AMOS Graphics window. An example of magnifica-
tion using the Loupe tool is presented in Figure 3.2. Finally, it is worth not-
ing that when either the Scroll or Zoom-In tool is activated, a right-click of 

Figure 3.2 AMOS Graphics: Magnified portion of hypothesized model using the 
Loupe tool.
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the mouse will provide a pop-up menu of different diagram features you 
may wish to access (see Figure 3.3).

Data specification

Now that we have provided AMOS with the model to be analyzed, our 
next job is to tell the program where to find the data. All data to be used 
in applications throughout this book have been placed in an AMOS 
folder called Data Files. To activate this folder, we can either click on the 
Data File icon , or pull down the File menu and select Data Files. Either 
choice will trigger the Data Files dialog box displayed in Figure 3.4; it is 
shown here as it pops up in the forefront of your workspace.

In reviewing the upper section of this dialog box, you will see that the 
program has identified the Group Name as Group Number 1; this labeling 
is default in the analysis of single sample data. The data file to be used 
for the current analysis is labeled ASC7INDM.TXT, and the sample size 
is 265; the 265/265 indicates that 265, of a total sample size of 265, have 
been selected for inclusion in the analysis. In the lower half of the dialog 
box, you will note a View Data button that allows you to peruse the data 

Figure 3.3 AMOS Graphics: Pop-up menu of drawing tools.
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Chapter three: Testing for the factorial validity of a theoretical construct 61

in spreadsheet form should you wish to do so. Once you have selected the 
data file that will serve as the working file upon which your hypothesized 
model is based, you simply click the OK button.

In the example shown here, the selected data file was already visible 
in the Data Files dialog box. However, suppose that you wanted to select 
from a list of several available data sets. To do so, you would click on the 
File Name button in the Data Files dialog box (see Figure 3.4). This action 
would then trigger the Open dialog box shown in Figure 3.5. Here, you 
select a data file and then click on the Open button. Once you have opened 
a file, it becomes the working file and its filename will then appear in the 
Data Files dialog box, as illustrated in Figure 3.4.

It is important that I point out some of the requirements of the AMOS 
program in the use of external data sets. If your data files are in ASCII 
format (as all of mine were initially), you will need to restructure them 
before you are able to conduct any analyses using AMOS. Consistent with 
SPSS and many other Windows applications, the most recent version of 
AMOS requires that data be structured in the comma-delimited format. 
Although the semicolon (rather than the comma) delimiter is used in 
many European and Asian countries, this is not a problem as AMOS can 
detect which version of the program is running (e.g., the French version) 

Figure 3.4 AMOS Graphics: Data Files dialog box.
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and then automatically define a compatible delimiter, which would be 
a semicolon in the case of the French version (J. L. Arbuckle, personal 
communication, February 22, 2008). Furthermore, all data must reside in 
an external file. For help in reformatting your data, the current AMOS 
online Help menu has a topic titled “Translating Your Old Text (ASCII) 
Data Files” that contains useful information related to the reformatting 
of ASCII files. The data used in this chapter are in the form of a text file. 
However, AMOS supports several common database formats, including 
SPSS *.sav files; I use different formats throughout this book.

Calculation of estimates

Now that we have specified both the model to be analyzed and the data 
file upon which the analyses are to be based, all that is left for us to do is 
to execute the job; we do so by clicking on the Calculate Estimates icon  . 
(Alternatively, we could select Calculate Estimates from the Analyze drop-
down menu.) Once the analyses have been completed, AMOS Graphics 
allows you to review the results from two different  perspectives—graphical 
and textual. In the graphical output, all estimates are presented in the 
path diagram. These results are obtained by clicking on the View Output 
Path Diagram icon  found at the top of the middle section of the AMOS 
main screen. Results related to the testing of our hypothesized model are 
presented in Figure 3.6. To copy the graphical output to another file, such 

Figure 3.5 AMOS Graphics: Open (data) dialog box.
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Figure 3.6 AMOS Graphics: Output path diagram for hypothesized model.
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as a Word document, either click on the Duplicate icon , or pull down 
the Edit menu and select Copy (to Clipboard). You can then paste the output 
into the document.

Likewise, you have two methods of viewing the textual output— either 
by clicking on the Text Output icon , or by selecting Text Output from the 
View drop-down menu. However, in either case, as soon as the analyses 
are completed, a red tab representing the AMOS output file will appear 
on the bottom status bar of your computer screen. Let’s turn now to the 
output resulting from our test of the hypothesized model.

AMOS text output: Hypothesized four-factor model

Textual output pertinent to a particular model is presented very neatly 
in the form of summaries related to specific sections of the output file. 
This tree-like arrangement enables the user to select sections of the output 
that are of particular interest. Figure 3.7 presents a view of this tree-like 
 formation of summaries, with summary information related to the hypoth-
esized four-factor model open. To facilitate the presentation and discus-
sion of results in this chapter, the material is divided into three primary 
sections: (a) “Model Summary,” (b) “Model Variables and Parameters,” 
and (c) “Model Evaluation.”

Figure 3.7 AMOS Graphics: Tested model summary notes.
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Model summary

This very important summary provides you with a quick overview of the 
model, including the information needed in determining its identification 
status. Here we see that there are 136 distinct sample moments, or, in other 
words, elements in the sample covariance matrix (i.e., number of pieces of 
information provided by the data), and 38 parameters to be estimated, 
thereby leaving 98 degrees of freedom based on an overidentified model, 
and a chi-square value of 158.511 with a probability level equal to .000.

Recall that the only data with which we have to work in SEM are the 
observed variables, which in the present case number 16. Based on the 
formula p(p + 1) / 2 (see Chapter 2), the sample covariance matrix for these 
data should yield 136 (16[17] / 2) sample moments, which, indeed, it does. 
A more specific breakdown of the estimated parameters is presented in 
the “Model Variables and Parameters” section discussed next. Likewise, 
an elaboration of the ML chi-square statistic, together with substantially 
more information related to model fit, is presented and discussed in the 
“Model Evaluation” section.

Model variables and parameters

The initial information provided in the AMOS text output file can be 
invaluable in helping you resolve any difficulties with the specification 
of a model. Listed first, and presented in Table 3.2, are all the variables 
in the model, accompanied by their categorization as either observed or 
unobserved, and as endogenous or exogenous. Consistent with the path 
diagram in Figure 3.1, all the observed variables (i.e., the input data) oper-
ate as dependent (i.e., endogenous) variables in the model; all factors and 
error terms are unobserved, and operate as independent (i.e., exogenous) 
variables in the model. This information is followed by a summary of the 
total number of variables in the model, as well as the number in each of 
the four categories.

The next section of the output file focuses on a summary of the 
parameters in the model and is presented in Table 3.3. Moving from left 
to right, we see that there are 32 regression weights, 20 of which are fixed 
and 12 of which are estimated; the 20 fixed regression weights include the 
first of each set of four factor loadings and the 16 error terms. There are 
6 covariances and 20 variances, all of which are estimated. In total, there 
are 58 parameters, 38 of which are to be estimated. Provided with this 
summary, it is now easy for you to determine the appropriate number of 
degrees of freedom and, ultimately, whether or not the model is identified. 
Although, of course, this information is provided by the program as noted 
in Figure 3.7, it is always good (and fun?) to see if your calculations are 
consistent with those of the program.
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Model evaluation

Of primary interest in structural equation modeling is the extent to which 
a hypothesized model “fits,” or, in other words, adequately describes the 
sample data. Given findings of an inadequate goodness-of-fit, the next 
logical step is to detect the source of misfit in the model. Ideally, evalua-
tion of model fit should derive from a variety of perspectives and be based 

Table 3.2 Selected AMOS Output for Hypothesized Four-Factor CFA Model: 
Summary of Model Variables

Your model contains the following variables
Observed, endogenous variables

SDQ2N37
SDQ2N25
SDQ2N13
SDQ2N01
SDQ2N40
SDQ2N28
SDQ2N16
SDQ2N04
SDQ2N46
SDQ2N34
SDQ2N22
SDQ2N10
SDQ2N43
SDQ2N31
SDQ2N19
SDQ2N07

Unobserved, exogenous variables
GSC ASC ESC MSC
err37 err40 Err46 err43
err25 err28 Err34 err31
err13 err16 Err22 err19
err01 err04 Err10 err07
Variable counts
Number of variables in your model:   36
Number of observed variables:      16
Number of unobserved variables:    20
Number of exogenous variables      20
Number of endogenous variables:     16
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on several criteria that assess model fit from a diversity of perspectives. 
In particular, these evaluation criteria focus on the adequacy of (a) the 
parameter estimates, and (b) the model as a whole.

Parameter estimates

In reviewing the model parameter estimates, three criteria are of interest: 
(a) the feasibility of the parameter estimates, (b) the appropriateness of 
the standard errors, and (c) the statistical significance of the parameter 
estimates. We turn now to a brief explanation of each.

Feasibility of parameter estimates
The initial step in assessing the fit of individual parameters in a model 
is to determine the viability of their estimated values. In particular, 
parameter estimates should exhibit the correct sign and size, and be 
consistent with the underlying theory. Any estimates falling outside 
the admissible range signal a clear indication that either the model is 
wrong or the input matrix lacks sufficient information. Examples of 
parameters exhibiting unreasonable estimates are correlations > 1.00, 
negative variances, and covariance or correlation matrices that are not 
positive definite.

Appropriateness of standard errors
Standard errors reflect the precision with which a parameter has been 
estimated, with small values suggesting accurate estimation. Thus, 
another indicator of poor model fit is the presence of standard errors that 
are excessively large or small. For example, if a standard error approaches 
zero, the test statistic for its related parameter cannot be defined (Bentler, 
2005). Likewise, standard errors that are extremely large indicate param-
eters that cannot be determined (Jöreskog & Sörbom, 1993).3 Because stan-
dard errors are influenced by the units of measurement in observed and/
or latent variables, as well as the magnitude of the parameter estimate 
itself, no definitive criteria of “small” and “large” have been established 
(see Jöreskog & Sörbom, 1989).

Table 3.3 Selected AMOS Output for Hypothesized Four-Factor  
CFA Model: Summary of Model Parameters

Parameter summary

Weights Covariances Variances Means Intercepts Total
Fixed 20 0 0 0 0 20
Labeled 0 0 0 0 0 0
Unlabeled 12 6 20 0 0 38
Total 32 6 20 0 0 58
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Statistical significance of parameter estimates
The test statistic here is the critical ratio (C.R.), which represents the 
parameter estimate divided by its standard error; as such, it oper-
ates as a z-statistic in testing that the estimate is statistically differ-
ent from zero. Based on a probability level of .05, then, the test statistic 
needs to be > ±1.96 before the hypothesis (that the estimate equals 0.0) 
can be rejected. Nonsignificant parameters, with the exception of error  
variances, can be considered unimportant to the model; in the interest of 
scientific parsimony, albeit given an adequate sample size, they should be 
deleted from the model. On the other hand, it is important to note that 
nonsignificant parameters can be indicative of a sample size that is too 
small (K. G. Jöreskog, personal communication, January 1997).

Let’s turn now to this section of the AMOS output file. After selecting 
Estimates from the list of output sections (see Figure 3.7), you will be pre-
sented with the information shown in Table 3.4. However, before examin-
ing the contents of this table, I wish to show you two examples of how you 
can obtain additional information related to these estimates. Illustrated in 
Figure 3.8 is the dialog box that appears after one click of the left mouse 
button and advises how you may obtain additional estimates. Clicking on 
the first option, To Estimate Squared Multiple Correlations, opens the AMOS 
Reference Guide dialog box shown in Figure 3.9. I show how to estimate 
these additional parameters, as well as other important information, later 
in this chapter as well as in other chapters that follow.

Let’s move on now to the estimated values presented in Table 3.4. It 
is important to note that, for simplicity, all estimates related to this first 
hypothesized model are presented only in the unstandardized form; fur-
ther options will be examined in subsequent applications.

As you can readily see, results are presented separately for the fac-
tor loadings (listed as regression weights), the covariances (in this case, 
for factors only), and the variances (for both factors and measurement 
errors). The parameter estimation information is very clearly and suc-
cinctly presented in the AMOS text output file. Listed to the right of each 
parameter is its estimated value (Column 1), standard error (Column 2), 
critical ratio (Column 3), and probability value (Column 4). An exami-
nation of this unstandardized solution reveals all estimates to be both 
reasonable and statistically significant; all standard errors appear also to 
be in good order.

Model as a whole

In the model summary presented in Figure 3.7, we observed that AMOS 
provided the overall chi-square (χ2) value, together with its degrees of 
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Table 3.4 Selected AMOS Output for Hypothesized Four-Factor 
CFA Model: Parameter Estimates

Estimate S.E. C.R. P

Regression weights
SDQ2N37<---GSC .934 .131 7.117 ***
SDQ2N25<---GSC .851 .132 6.443 ***
SDQ2N13<---GSC 1.083 .154 7.030 ***
SDQ2N01<---GSC 1.000
SDQ2N40<---ASC 1.259 .157 8.032 ***

SDQ2N28<---ASC 1.247 .154 8.082 ***
SDQ2N16<---ASC 1.279 .150 8.503 ***
SDQ2N04<---ASC 1.000
SDQ2N46<---ESC .843 .117 7.212 ***
SDQ2N34<---ESC .670 .148 4.530 ***
SDQ2N22<---ESC .889 .103 8.642 ***
SDQ2N10<---ESC 1.000
SDQ2N43<---MSC .655 .049 13.273 ***
SDQ2N31<---MSC .952 .049 19.479 ***
SDQ2N19<---MSC .841 .058 14.468 ***
SDQ2N07<---MSC 1.000

Covariances
ASC<-->ESC .464 .078 5.909 ***
GSC<-->ESC .355 .072 4.938 ***
ASC<-->MSC .873 .134 6.507 ***
GSC<-->MSC .635 .118 5.377 ***
GSC<-->ASC .415 .079 5.282 ***
ESC<-->MSC .331 .100 3.303 ***

Variances
GSC .613 .138 4.456 ***
ASC .561 .126 4.444 ***
ESC .668 .116 5.738 ***
MSC 2.307 .273 8.444 ***

err37 .771 .088 8.804 ***

err25 1.056 .107 9.878 ***
err13 1.119 .124 9.002 ***
err01 1.198 .126 9.519 ***
err40 .952 .095 10.010 ***

(continued)
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freedom and probability value. However, this information is intended 
only as a quick overview of model fit. Indeed, the program, by default, 
provides many other fit statistics in its output file. Before turning to this 
section of the AMOS output, however, it is essential that I first review four 
important aspects of fitting hypothesized models; these are (a) the model-
fitting process, (b) the issue of statistical significance, (c) the estimation 
process, and (d) the goodness-of-fit statistics.

The model-fitting process
In Chapter 1, I presented a general description of this process and noted 
that the primary task is to determine the goodness-of-fit between the 
hypothesized model and the sample data. In other words, the researcher 
specifies a model and then uses the sample data to test the model.

With a view to helping you to gain a better understanding of the 
goodness-of-fit statistics presented in the AMOS output file, let’s take a 
few moments to recast this model-fitting process within a more formal-
ized framework. As such, let S represent the sample covariance matrix (of 
observed variable scores), Σ (sigma) represent the population covariance 
matrix, and θ (theta) represent a vector that comprises the model param-
eters. Thus, Σ(θ) represents the restricted covariance matrix implied by 
the model (i.e., the specified structure of the hypothesized model). In 
SEM, the null hypothesis (H0) being tested is that the postulated model 
holds in the population [i.e., Σ = Σ(θ)]. In contrast to traditional statisti-
cal procedures, however, the researcher hopes not to reject H0 (but see 

Table 3.4 Selected AMOS Output for Hypothesized Four-Factor 
CFA Model: Parameter Estimates (Continued)

Estimate S.E. C.R. P

Variances
err28 .896 .090 9.940 ***
err16 .616 .068 9.003 ***
err04 1.394 .128 10.879 ***
err46 1.201 .118 10.164 ***
err34 2.590 .233 11.107 ***
err22 .657 .075 8.718 ***
err10 .653 .082 7.926 ***
err43 .964 .092 10.454 ***
err31 .365 .065 5.638 ***
err19 1.228 .121 10.133 ***
err07 .854 .100 8.535 ***
*** probability < .000
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MacCallum, Browne, & Sugarawa, 1996, for proposed changes to this 
hypothesis-testing strategy).

The issue of statistical significance
The rationale underlying the practice of statistical significance testing 
has generated a plethora of criticism over, at least, the past 4 decades. 
Indeed, Cohen (1994) has noted that, despite Rozeboom’s (1960) admo-
nition more than 33 years ago that “the statistical folkways of a more 
primitive past continue to dominate the local scene” (p. 417), this dubi-
ous practice still persists. (For an array of supportive as well as opposing 
views with respect to this article, see the American Psychologist [1995], 
50, 1098–1103.) In light of this historical bank of criticism, together with 
the current pressure by methodologists to cease this traditional ritual 

Figure 3.8 AMOS Graphics: Pop-up menu enabling provision of additional 
estimates.
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(see, e.g., Cohen, 1994; Kirk, 1996; Schmidt, 1996; Thompson, 1996), the 
Board of Scientific Affairs for the American Psychological Association 
appointed a task force to study the feasibility of phasing out the use of 
null hypothesis testing procedures, as described in course texts and 
reported in journal articles. Consequently, the end of statistical signifi-
cance testing relative to traditional statistical methods may soon be a 
reality. (For a compendium of articles addressing this issue, see Harlow, 
Mulaik, & Steiger, 1997.)

Statistical significance testing with respect to the analysis of 
 covariance structures, however, is somewhat different in that it is driven 
by degrees of freedom involving the number of elements in the sample  
covariance matrix and the number of parameters to be estimated. 
Nonetheless, it is interesting to note that many of the issues raised with 
respect to the traditional statistical methods (e.g., practical significance, 
the importance of confidence intervals, and the importance of replication) 
have long been addressed in SEM applications. Indeed, it was this very 
issue of practical “nonsignificance” in model testing that led Bentler and 

Figure 3.9 AMOS Graphics: Pop-up AMOS Reference Guide dialog box.
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Bonett (1980) to develop one of the first subjective indices of fit (the NFI); 
their work subsequently spawned the development of numerous addi-
tional practical indices of fit, many of which are included in the AMOS 
output. Likewise, the early work of Steiger (1990; Steiger & Lind, 1980) pre-
cipitated the call for use of confidence intervals in the reporting of SEM 
findings (see, e.g., MacCallum et al., 1996). Finally, the classic paper by 
Cliff (1983) denouncing the proliferation of post hoc model fitting, and 
criticizing the apparent lack of concern for the dangers of overfitting mod-
els to trivial effects arising from capitalization on chance factors, spirited 
the development of evaluation indices (Browne & Cudeck, 1989; Cudeck 
& Browne, 1983), as well as a general call for increased use of cross-vali-
dation procedures (see, e.g., MacCallum, Roznowski, Mar, & Reith, 1994; 
MacCallum, Roznowski, & Necowitz, 1992).

The estimation process
The primary focus of the estimation process in SEM is to yield parameter 
values such that the discrepancy (i.e., residual) between the sample covari-
ance matrix S and the population covariance matrix implied by the model 
[Σ(θ)] is minimal. This objective is achieved by minimizing a discrepancy 
function, F[S, Σ(θ)], such that its minimal value (Fmin) reflects the point in 
the estimation process where the discrepancy between S and Σ(θ) is least 
[S – Σ(θ) = minimum]. Taken together, then, Fmin serves as a measure of the 
extent to which S differs from Σ(θ).

Goodness-of-fit statistics
Let’s now turn to the goodness-of-fit statistics which are presented in 
Table 3.5. For each set of fit statistics, you will note three rows. The 
first row, as indicated, focuses on the hypothesized model under test 
(i.e., your model); the second, on the saturated model; and the third, on 
the independence model. Explanation of the latter two models, I believe, 
is most easily understood within a comparative framework. As such, 
think of these three models as representing points on a continuum, 
with the independence model at one extreme, the saturated model at the 
other extreme, and the hypothesized model somewhere in between. The 
independence model is one of complete independence of all variables in 
the model (i.e., in which all correlations among variables are zero) and 
is the most restricted. In other words, it is a null model, with nothing 
going on here as each variable represents a factor. The saturated model, 
on the other hand, is one in which the number of estimated parameters 
equals the number of data points (i.e., variances and covariances of the 
observed variables, as in the case of the just-identified model), and is 
the least restricted.
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Table 3.5 Selected AMOS Output for Hypothesized Four-Factor  
CFA Model: Goodness-of-Fit Statistics

Model fit summary

CMIN

Model NPAR CMIN DF P
CMIN/ 

DF
Your model 38 158.511 98 .000 1.617
Saturated model 136 .000 0
Independence model 16 1696.728 120 .000 14.139

RMR, GFI
Model RMR GFI AGFI PGFI
Your model .103 .933 .906 .672
Saturated model .000 1.000
Independence model .628 .379 .296 .334

Baseline comparisons

Model
NFI RFI IFI TLI

CFIDelta 1 rho 1 Delta 2 rho 2
Your model .907 .886 .962 .953 .962
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

Parsimony-adjusted measures
Model PRATIO PNFI PCFI
Your model .817 .740 .785
Saturated model .000 .000 .000
Independence model 1.000 .000 .000

NCP
Model NCP LO 90 HI 90
Your model 60.511 29.983 98.953
Saturated model .000 .000 .000
Independence model 1576.728 1447.292 1713.561

FMIN
Model FMIN F0 LO 90 HI 90
Your model .600 .229 .114 .375

Saturated model .000 .000 .000 .000
Independence model 6.427 5.972 5.482 6.491

(continued)
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For didactic as well as space reasons, all goodness-of-fit statistics are 
provided only for the initially hypothesized model in this first application; 
hereafter, only a selected group of fit statistics will be reported. We 
turn now to an examination of each cluster, as they relate to the hypoth-
esized model only. (Formulae related to each fit statistic can be found in 
Arbuckle, 2007.)

Focusing on the first set of fit statistics, we see the labels NPAR (num-
ber of parameters), CMIN (minimum discrepancy), DF (degrees of free-
dom), P (probability value), and CMIN/DF. The value of 158.511, under 
CMIN, represents the discrepancy between the unrestricted sample 
covariance matrix S, and the restricted covariance matrix Σ(θ), and, in 
essence, represents the Likelihood Ratio Test statistic, most commonly 
expressed as a χ2 statistic. It is important to note that, for the remainder 
of the book, I refer to CMIN as the χ2. This statistic is equal to (N–1)Fmin 
(sample size minus 1, multiplied by the minimum fit function) and, in 

Table 3.5 Selected AMOS Output for Hypothesized Four-Factor  
CFA Model: Goodness-of-Fit Statistics (Continued)

RMSEA
Model RMSEA LO 90 HI 90 PCLOSE
Your model .048 .034 .062 .562
Independence model .223 .214 .233 .000

AIC
Model AIC BCC BIC CAIC
Your model 234.511 239.742 370.541 408.541

Saturated model 272.000 290.721 758.843 894.843
Independence model 1728.728 1730.931 1786.004 1805.004

ECVI
Model ECVI LO 90 HI 90 MECVI
Your model .888 .773 1.034 .908
Saturated model 1.030 1.030 1.030 1.101
Independence model 6.548 6.058 7.067 6.557

HOELTER

Model
HOELTER HOELTER

.05 .01
Your model 204 223
Independence model 23 25
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large samples, is distributed as a central χ2 with degrees of freedom equal 
to 1/2(p) (p + 1) – t, where p is the number of observed variables, and t is 
the number of parameters to be estimated (Bollen, 1989a). In general, H0: 
Σ = Σ(θ) is equivalent to the hypothesis that Σ – Σ(θ) = 0; the χ2 test, then, 
simultaneously tests the extent to which all residuals in Σ – Σ(θ) are zero 
(Bollen, 1989a). Framed a little differently, the null hypothesis (H0) postu-
lates that specification of the factor loadings, factor variances and cova-
riances, and error variances for the model under study are valid; the χ2 
test simultaneously tests the extent to which this specification is true. The 
probability value associated with χ2 represents the likelihood of obtaining 
a χ2 value that exceeds the χ2 value when H0 is true. Thus, the higher the 
probability associated with χ2, the closer the fit between the hypothesized 
model (under H0) and the perfect fit (Bollen, 1989a).

The test of our H0, that SC is a four-factor structure as depicted in 
Figure 3.1, yielded a χ2 value of 158.511, with 98 degrees of freedom and a 
probability of less than .0001 (p < .0001), thereby suggesting that the fit of 
the data to the hypothesized model is not entirely adequate. Interpreted 
literally, this test statistic indicates that, given the present data, the hypoth-
esis bearing on SC relations, as summarized in the model, represents 
an unlikely event (occurring less than one time in 1,000 under the null 
hypothesis) and should be rejected.

However, both the sensitivity of the Likelihood Ratio Test to sample 
size and its basis on the central χ2 distribution, which assumes that the 
model fits perfectly in the population (i.e., that H0 is correct), have led 
to problems of fit that are now widely known. Because the χ2 statistic 
equals (N–1)Fmin, this value tends to be substantial when the model does 
not hold and when sample size is large (Jöreskog & Sörbom, 1993). Yet, 
the analysis of covariance structures is grounded in large sample theory. 
As such, large samples are critical to the obtaining of precise param-
eter estimates, as well as to the tenability of asymptotic distributional 
approximations (MacCallum et al., 1996). Thus, findings of well-fitting 
hypothesized  models, where the χ2 value approximates the degrees of 
freedom, have proven to be unrealistic in most SEM empirical research. 
More common are findings of a large χ2 relative to degrees of freedom, 
thereby indicating a need to modify the model in order to better fit the 
data (Jöreskog & Sörbom, 1993). Thus, results related to the test of our 
hypothesized model are not unexpected. Indeed, given this problematic 
aspect of the Likelihood Ratio Test, and the fact that postulated models 
(no matter how good) can only ever fit real-world data approximately and 
never exactly, MacCallum et al. (1996) recently proposed changes to the 
traditional hypothesis-testing approach in covariance structure model-
ing. (For an extended discussion of these changes, readers are referred to 
MacCallum et al., 1996.)
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Researchers have addressed the χ2 limitations by developing 
 goodness-of-fit indices that take a more pragmatic approach to the eval-
uation process. Indeed, the past 3 decades have witnessed a plethora of 
newly developed fit indices, as well as unique approaches to the model-
fitting process (for reviews, see, e.g., Gerbing & Anderson, 1993; Hu & 
Bentler, 1995; Marsh, Balla, & McDonald, 1988; Tanaka, 1993). One of the 
first fit statistics to address this problem was the χ2/degrees of freedom 
ratio (Wheaton, Muthén, Alwin, & Summers, 1977), which appears as 
CMIN/DF, and is presented in the first cluster of statistics shown in 
Table 3.5.4 For the most part, the remainder of the AMOS output file is 
devoted to these alternative indices of fit, and, where applicable, to their 
related confidence intervals. These criteria, commonly referred to as 
subjective, practical, or ad hoc indices of fit, are typically used as adjuncts 
to the χ2 statistic.

Turning now to the next group of statistics, we see the labels RMR, 
GFI, AGFI, and PGFI. The root mean square residual (RMR) represents 
the average residual value derived from the fitting of the variance– 
covariance matrix for the hypothesized model Σ(θ) to the variance– 
covariance matrix of the sample data (S). However, because these 
residuals are relative to the sizes of the observed variances and covari-
ances, they are difficult to interpret. Thus, they are best interpreted in the 
metric of the correlation matrix (Hu & Bentler, 1995; Jöreskog & Sörbom, 
1989). The standardized RMR, then, represents the average value across 
all standardized residuals, and ranges from zero to 1.00; in a well-fitting 
model, this value will be small (say, .05 or less). The value of .103 shown 
in Table 3.5 represents the unstandardized residual value. Not shown on 
the output, however, is the standardized RMR value, which is .043 and 
represents the average discrepancy between the sample observed and 
hypothesized correlation matrices. It can be interpreted as meaning that 
the model explains the correlations to within an average error of .043 
(see Hu & Bentler, 1995).

The Goodness-of-Fit Index (GFI) is a measure of the relative amount 
of variance and covariance in S that is jointly explained by Σ. The 
Adjusted Goodness-of-Fit Index (AGFI) differs from the GFI only in the 
fact that it adjusts for the number of degrees of freedom in the specified 
model. As such, it also addresses the issue of parsimony by incorporat-
ing a penalty for the inclusion of additional parameters. The GFI and 
AGFI can be classified as absolute indices of fit because they basically 
compare the hypothesized model with no model at all (see Hu & Bentler, 
1995). Although both indices range from zero to 1.00, with values close to 
1.00 being indicative of good fit, Jöreskog and Sörbom (1993) noted that, 
theoretically, it is possible for them to be negative; Fan, Thompson, and 
Wang (1999) further cautioned that GFI and AGFI values can be overly 
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influenced by sample size. This, of course, should not occur as it would 
reflect the fact that the model fits worse than no model at all. Based on the 
GFI and AGFI values reported in Table 3.5 (.933 and .906, respectively), 
we can once again conclude that our hypothesized model fits the sample 
data fairly well.

The last index of fit in this group, the Parsimony Goodness-of-Fit Index 
(PGFI), was introduced by James, Mulaik, and Brett (1982) to address the 
issue of parsimony in SEM. As the first of a series of “parsimony-based 
indices of fit” (see Williams & Holahan, 1994), the PGFI takes into account 
the complexity (i.e., number of estimated parameters) of the hypothesized 
model in the assessment of overall model fit. As such, “two logically inter-
dependent pieces of information,” the goodness-of-fit of the model (as 
measured by the GFI) and the parsimony of the model, are represented 
by the single index PGFI, thereby providing a more realistic evaluation 
of the hypothesized model (Mulaik et al., 1989, p. 439). Typically, parsi-
mony-based indices have lower values than the threshold level generally 
perceived as “acceptable” for other normed indices of fit. Mulaik et al. 
suggested that nonsignificant χ2 statistics and goodness-of-fit indices in 
the .90s, accompanied by parsimonious-fit indices in the 50s, are not unex-
pected. Thus, our finding of a PGFI value of .672 would seem to be consis-
tent with our previous fit statistics.

We turn now to the next set of goodness-of-fit statistics (baseline com-
parisons), which can be classified as incremental or comparative indices 
of fit (Hu & Bentler, 1995; Marsh et al., 1988). As with the GFI and AGFI, 
incremental indices of fit are based on a comparison of the hypothesized 
model against some standard. However, whereas this standard represents 
no model at all for the GFI and AGFI, it represents a baseline model (typi-
cally, the independence or null model noted above for the incremental 
indices).5 We now review these incremental indices.

For the better part of a decade, Bentler and Bonett’s (1980) Normed Fit 
Index (NFI) has been the practical criterion of choice, as evidenced in large 
part by the current “classic” status of its original paper (see Bentler, 1992; 
Bentler & Bonett, 1987). However, addressing evidence that the NFI has 
shown a tendency to underestimate fit in small samples, Bentler (1990) 
revised the NFI to take sample size into account and proposed the 
Comparative Fit Index (CFI; see last column). Values for both the NFI and 
CFI range from zero to 1.00 and are derived from the comparison of a 
hypothesized model with the independence (or null) model, as described 
earlier. As such, each provides a measure of complete covariation in the 
data. Although a value > .90 was originally considered representative of a 
well-fitting model (see Bentler, 1992), a revised cutoff value close to .95 has 
recently been advised (Hu & Bentler, 1999). Both indices of fit are reported 
in the AMOS output; however, Bentler (1990) has suggested that, of the 
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two, the CFI should be the index of choice. As shown in Table 3.5, the CFI 
(.962) indicated that the model fitted the data well in the sense that the 
hypothesized model adequately described the sample data. In somewhat 
less glowing terms, the NFI value suggested that model fit was only mar-
ginally adequate (.907).

The Relative Fit Index (RFI; Bollen, 1986) represents a derivative of 
the NFI; as with both the NFI and CFI, the RFI coefficient values range 
from zero to 1.00, with values close to .95 indicating superior fit (see Hu & 
Bentler, 1999). The Incremental Index of Fit (IFI) was developed by Bollen 
(1989b) to address the issues of parsimony and sample size which were 
known to be associated with the NFI. As such, its computation is basically 
the same as that of the NFI, with the exception that degrees of freedom are 
taken into account. Thus, it is not surprising that our finding of IFI of .962 
is consistent with that of the CFI in reflecting a well-fitting model. Finally, 
the Tucker-Lewis Index (TLI; Tucker & Lewis, 1973), consistent with the 
other indices noted here, yields values ranging from zero to 1.00, with 
values close to .95 (for large samples) being indicative of good fit (see Hu 
& Bentler, 1999).

The next cluster of fit indices relates to the issue of model parsimony. 
The first fit index (PRATIO) relates to the initial parsimony ratio pro-
posed by James et al. (1982). More appropriately, however, the index has 
subsequently been tied to other goodness-of-fit indices (see, e.g., the PGFI 
noted earlier). Here, it is computed relative to the NFI and CFI. In both 
cases, as was true for PGFI, the complexity of the model is taken into 
account in the assessment of model fit (see James et al.; Mulaik et al., 1989). 
Again, a PNFI of .740 and PCFI of .785 (see Table 3.5) fall in the range of 
expected values.6

The next set of fit statistics provides us with the noncentrality param-
eter (NCP) estimate. In our initial discussion of the χ2 statistic, we focused 
on the extent to which the model was tenable and could not be rejected. 
Now, however, let’s look a little more closely at what happens when the 
hypothesized model is incorrect [i.e., Σ ≠ Σ(θ)]. In this circumstance, the χ2 
statistic has a noncentral χ2 distribution, with a noncentrality parameter, 
λ, that is a fixed parameter with associated degrees of freedom, and can 
be denoted as χ2

(df,λ) (Bollen, 1989a; Hu & Bentler, 1995; Satorra & Saris, 
1985). Essentially, it functions as a measure of the discrepancy between 
Σ and Σ(θ) and, thus, can be regarded as a “population badness-of-fit” 
(Steiger, 1990). As such, the greater the discrepancy between Σ and Σ(θ), 
the larger the λ value. (For a presentation of the various types of error 
associated with discrepancies among matrices, see Browne & Cudeck, 
1993; Cudeck & Henly, 1991; MacCallum et al., 1994.) It is now easy to 
see that the central χ2 statistic is a special case of the noncentral χ2 distri-
bution when λ = 0.0. (For an excellent discussion and graphic  portrayal 
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of  differences between the central and noncentral χ2 statistics, see 
MacCallum et al., 1996.) As a means to establishing the precision of the 
noncentrality parameter estimate, Steiger (1990) has suggested that it be 
framed within the bounds of confidence intervals. Turning to Table 3.5, 
we find that our hypothesized model yielded a noncentrality parameter 
of 60.511. This value represents the χ2 value minus its degrees of freedom 
(158.511 – 98). The confidence interval indicates that we can be 90% con-
fident that the population value of the noncentrality parameter (λ) lies 
between 29.983 and 98.953.

For those who may wish to use this information, values related to the 
minimum discrepancy function (FMIN) and the population discrepancy 
(FO) are presented next. The columns labeled “LO 90” and “HI 90” con-
tain the lower and upper limits, respectively, of a 90% confidence interval 
around FO.

The next set of fit statistics focuses on the root mean square error 
of approximation (RMSEA). Although this index, and the concep-
tual framework within which it is embedded, was first proposed by 
Steiger and Lind in 1980, it has only recently been recognized as one 
of the most informative criteria in covariance structure modeling. The 
RMSEA takes into account the error of approximation in the popula-
tion and asks the question “How well would the model, with unknown 
but optimally chosen parameter values, fit the population covariance 
matrix if it were available?” (Browne & Cudeck, 1993, pp. 137–138). This 
discrepancy, as measured by the RMSEA, is expressed per degree of 
freedom, thus making it sensitive to the number of estimated param-
eters in the model (i.e., the complexity of the model); values less than 
.05 indicate good fit, and values as high as .08 represent reasonable 
errors of approximation in the population (Browne & Cudeck, 1993). 
MacCallum et al. (1996) have recently elaborated on these cutpoints 
and noted that RMSEA values ranging from .08 to .10 indicate medio-
cre fit, and those greater than .10 indicate poor fit. Although Hu and 
Bentler (1999) have suggested a value of .06 to be indicative of good 
fit between the hypothesized model and the observed data, they cau-
tioned that, when sample size is small, the RMSEA (and TLI) tend to 
overreject true population models (but see Fan et al., 1999, for compari-
sons with other indices of fit). Although these criteria are based solely 
on  subjective judgement, and therefore cannot be regarded as infal-
lible or correct, Browne and Cudeck (1993) and MacCallum et al. (1996) 
argued that they would appear to be more realistic than a requirement 
of exact fit, where RMSEA = 0.0. (For a generalization of the RMSEA to 
multiple independent samples, see Steiger, 1998.)

Overall, MacCallum and Austin (2000) have strongly recommended 
routine use of the RMSEA for at least three reasons: (a) It would appear 
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to be adequately sensitive to model misspecification (Hu & Bentler, 1998), 
(b) commonly used interpretative guidelines would appear to yield 
appropriate conclusions regarding model quality (Hu & Bentler, 1998, 
1999), and (c) it is possible to build confidence intervals around RMSEA 
values.

Addressing Steiger’s (1990) call for the use of confidence intervals 
to assess the precision of RMSEA estimates, AMOS reports a 90% inter-
val around the RMSEA value. In contrast to point estimates of model fit 
(which do not reflect the imprecision of the estimate), confidence intervals 
can yield this information, thereby providing the researcher with more 
assistance in the evaluation of model fit. Thus, MacCallum et al. (1996) 
strongly urged the use of confidence intervals in practice. Presented with 
a small RMSEA, albeit a wide confidence interval, a researcher would 
conclude that the estimated discrepancy value is quite imprecise, thereby 
negating any possibility to determine accurately the degree of fit in the 
population. In contrast, a very narrow confidence interval would argue 
for good precision of the RMSEA value in reflecting model fit in the popu-
lation (MacCallum et al., 1996).

In addition to reporting a confidence interval around the RMSEA 
value, AMOS tests for the closeness of fit (PCLOSE). That is, it tests the 
hypothesis that the RMSEA is “good” in the population (specifically, that 
it is < .05). Jöreskog and Sörbom (1996a) have suggested that the p-value 
for this test should be > .50.

Turning to Table 3.5, we see that the RMSEA value for our hypothesized 
model is .048, with the 90% confidence interval ranging from .034 to .062 
and the p-value for the test of closeness of fit equal to .562. Interpretation 
of the confidence interval indicates that we can be 90% confident that the 
true RMSEA value in the population will fall within the bounds of .034 
and .062, which represents a good degree of precision. Given that (a) the 
RMSEA point estimate is < .05 (.048); (b) the upper bound of the 90% inter-
val is .06, which is less than the value suggested by Browne and Cudeck 
(1993), albeit equal to the cutoff value proposed by Hu and Bentler (1999); 
and (c) the probability value associated with this test of close fit is > .50 
(p = .562), we can conclude that the initially hypothesized model fits the 
data well.7

Before leaving this discussion of the RMSEA, it is important to note 
that confidence intervals can be influenced seriously by sample size, as 
well as model complexity (MacCallum et al., 1996). For example, if sample 
size is small and the number of estimated parameters is large, the confi-
dence interval will be wide. Given a complex model (i.e., a large number of 
estimated parameters), a very large sample size would be required in order 
to obtain a reasonably narrow confidence interval. On the other hand, if 
the number of parameters is small, then the probability of obtaining a 
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narrow confidence interval is high, even for samples of rather moderate 
size (MacCallum et al., 1996).

Let’s turn, now, to the next cluster of statistics. The first of these is 
Akaike’s (1987) Information Criterion (AIC), with Bozdogan’s (1987) con-
sistent version of the AIC (CAIC) shown at the end of the row. Both criteria 
address the issue of parsimony in the assessment of model fit; as such, sta-
tistical goodness-of-fit as well as the number of estimated parameters are 
taken into account. Bozdogan, however, noted that the AIC carried a pen-
alty only as it related to degrees of freedom (thereby reflecting the number 
of estimated parameters in the model), and not to sample size. Presented 
with factor analytic findings that revealed the AIC to yield asymptotically 
inconsistent estimates, he proposed the CAIC, which takes sample size 
into account (Bandalos, 1993). The AIC and CAIC are used in the compari-
son of two or more models, with smaller values representing a better fit 
of the hypothesized model (Hu & Bentler, 1995). The AIC and CAIC indi-
ces also share the same conceptual framework; as such, they reflect the 
extent to which parameter estimates from the original sample will cross-
validate in future samples (Bandalos, 1993). The Browne-Cudeck Criterion 
(BCC; Browne & Cudeck, 1989) and the Bayes Information Criterion (BIC; 
Raftery, 1993; Schwartz, 1978) operate in the same manner as the AIC 
and CAIC. The basic difference among these indices is that both the BCC 
and BIC impose greater penalties than either the AIC or CAIC for model 
complexity. Turning to the output once again, we see that in the case of 
all four of these fit indices, the fit statistics for the hypothesized model 
are substantially smaller than they are for either the independence or the 
saturated models.

The Expected Cross-Validation Index (ECVI) is central to the next 
cluster of fit statistics. The ECVI was proposed, initially, as a means of 
assessing, in a single sample, the likelihood that the model cross-vali-
dates across similar-sized samples from the same population (Browne & 
Cudeck, 1989). Specifically, it measures the discrepancy between the fit-
ted covariance matrix in the analyzed sample, and the expected covari-
ance matrix that would be obtained in another sample of equivalent size. 
Application of the ECVI assumes a comparison of models whereby an 
ECVI index is computed for each model, and then all ECVI values are 
placed in rank order; the model having the smallest ECVI value exhibits 
the greatest potential for replication. Because ECVI coefficients can take 
on any value, there is no determined appropriate range of values.

In assessing our hypothesized four-factor model, we compare its 
ECVI value of .888 with those of both the saturated model (ECVI = 1.030) 
and the independence model (ECVI = 6.548). Given the lower ECVI value 
for the hypothesized model, compared with both the independence and 
saturated models, we conclude that it represents the best fit to the data. 
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Beyond this comparison, Browne and Cudeck (1993) have shown that it 
is now possible to take the precision of the estimated ECVI value into 
account through the formulation of confidence intervals. Turning to 
Table 3.5 again, we see that this interval ranges from .773 to 1.034. Taken 
together, these results suggest that the hypothesized model is well fitting 
and represents a reasonable approximation to the population. The last 
fit statistic, the MECVI (modified ECVI), is actually identical to the BCC, 
except for a scale factor (Arbuckle, 2007).

The last goodness-of-fit statistic appearing on the AMOS output is 
Hoelter’s (1983) Critical N (CN) (albeit labeled as Hoelter’s .05 and .01 indi-
ces). This fit statistic differs substantially from those previously discussed 
in that it focuses directly on the adequacy of sample size, rather than on 
model fit. Development of Hoelter’s index arose from an attempt to find a 
fit index that is independent of sample size. Specifically, its purpose is to 
estimate a sample size that would be sufficient to yield an adequate model 
fit for a χ2 test (Hu & Bentler, 1995). Hoelter proposed that a value in excess 
of 200 is indicative of a model that adequately represents the sample data. 
As shown in Table 3.5, both the .05 and .01 CN values for our hypoth-
esized SC model were > 200 (204 and 223, respectively). Interpretation 
of this finding, then, leads us to conclude that the size of our sample  
(N = 265) was satisfactory according to Hoelter’s benchmark that the CN 
should exceed 200.

Having worked your way through this smorgasbord of goodness-
of-fit measures, you are no doubt feeling totally overwhelmed and won-
dering what you do with all this information! Although you certainly 
don’t need to report the entire set of fit indices, such an array can give 
you a good sense of how well your model fits the sample data. But, how 
does one choose which indices are appropriate in evaluating model fit? 
Unfortunately, this choice is not a simple one, largely because particu-
lar indices have been shown to operate somewhat differently given the 
sample size, estimation procedure, model complexity, and/or violation 
of the underlying assumptions of multivariate normality and variable 
independence. Thus, Hu and Bentler (1995) cautioned that, in choos-
ing which goodness-of-fit indices to use in the assessment of model 
fit, careful consideration of these critical factors is essential. For fur-
ther elaboration on the above goodness-of-fit statistics with respect to 
their formulae and functions, or the extent to which they are affected 
by  sample size, estimation procedures, misspecification, and/or viola-
tions of assumptions, readers are referred to Arbuckle (2007); Bandalos 
(1993); Beauducel and Wittmann (2005); Bentler and Yuan (1999); Bollen 
(1989a); Boomsma and Hoogland (2001); Browne and Cudeck (1993); 
Curran, West, and Finch (1996); Davey, Savla, and Luo (2005); Fan and 
Sivo (2005); Fan et al. (1999); Finch, West, and MacKinnon (1997); Gerbing 
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and Anderson (1993); Hu and Bentler (1995, 1998, 1999); Hu, Bentler, and 
Kano (1992); Jöreskog and Sörbom (1993); La Du and Tanaka (1989); Lei 
and Lomax (2005); Marsh et al. (1988); Mulaik et al. (1989); Raykov and 
Widaman (1995); Stoel, Garre, Dolan, and van den Wittenboer (2006); 
Sugawara and MacCallum (1993); Tomarken and Waller (2005); Weng 
and Cheng (1997); West, Finch, and Curran (1995); Wheaton (1987); and 
Williams and Holahan (1994). For an annotated bibliography, see Austin 
and Calderón (1996).

In finalizing this section on model assessment, I wish to leave you 
with this important reminder—that global fit indices alone cannot 
possibly envelop all that needs to be known about a model in order to 
judge the adequacy of its fit to the sample data. As Sobel and Bohrnstedt 
(1985) so cogently stated over 2 decades ago, “Scientific progress could 
be impeded if fit coefficients (even appropriate ones) are used as the 
primary criterion for judging the adequacy of a model” (p. 158). They 
further posited that, despite the problematic nature of the χ2 statistic, 
exclusive reliance on goodness-of-fit indices is unacceptable. Indeed, fit 
indices provide no guarantee whatsoever that a model is useful. In fact, 
it is entirely possible for a model to fit well and yet still be incorrectly 
specified (Wheaton, 1987). (For an excellent review of ways by which 
such a seemingly dichotomous event can happen, readers are referred 
to Bentler & Chou, 1987.) Fit indices yield information bearing only on 
the model’s lack of fit. More importantly, they can in no way reflect the 
extent to which the model is plausible; this judgment rests squarely on the 
shoulders of the researcher. Thus, assessment of model adequacy must be 
based on multiple criteria that take into account theoretical, statistical, 
and practical considerations.

Thus far, on the basis of our goodness-of-fit results, we could very 
well conclude that our hypothesized four-factor CFA model fits the sample 
data well. However, in the interest of completeness, and for didactic pur-
poses, I consider it instructive to walk you through the process involved 
in determining evidence of model misspecification. That is, we conduct 
an analysis of the data that serves in identifying any parameters that have 
been incorrectly specified. Let’s turn now, then, to the process of deter-
mining evidence of model misspecification.

Model misspecification

AMOS yields two types of information that can be helpful in detecting 
model misspecification—the standardized residuals and the modification 
indices. Because this information was not provided as default output in 
our initial test of the model, we request this optional information now. 
To obtain this resource, we either click on the Analysis Properties icon, 
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or pull down the View menu and select Analysis Properties. Both actions 
 trigger a  multiple-layered dialog box that offers a wide variety of options. 
Figure 3.10 shows this dialog box with the Output tab in a forward position. 
For our purposes here, we select only residuals and modification indices 
as our sole options, as indicated at the bottom left of the dialog box.

Residuals
Recall that the essence of SEM is to determine the fit between the restricted 
covariance matrix [Σ(θ)], implied by the hypothesized model, and the sam-
ple covariance matrix (S); any discrepancy between the two is captured by 
the residual covariance matrix. Each element in this residual matrix, then, 
represents the discrepancy between the covariances in Σ(θ) and those in  
S [i.e., Σ(θ) – S]; that is to say, there is one residual for each pair of observed 
variables (Jöreskog, 1993). In the case of our hypothesized model, for 
example, the residual matrix would contain ([16 × 17] / 2) = 136 elements. 
It may be worth noting that, as in conventional regression analysis, the 

Figure 3.10 AMOS Graphics: Analysis properties dialog box with output tab 
selected.
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residuals are not independent of one another. Thus, any attempts to test 
them (in the strict statistical sense) would be inappropriate. In essence, 
only their magnitude is of interest in alerting the researcher to possible 
areas of model misfit.

The matrices of both unstandardized and standardized residuals 
are presented in the optional AMOS output. (Recall that the unstan-
dardized residuals were presented earlier.) However, because the fitted 
residuals are dependent on the unit of measurement of the observed 
variables, they can be difficult to interpret, and thus their standardized 
values are typically examined. As such, only the latter are presented in 
Table 3.6. Standardized residuals are fitted residuals divided by their 
asymptotically (large sample) standard errors (Jöreskog & Sörbom, 1993). 
As such, they are analogous to Z-scores and are therefore the easier of 
the two sets of residual values to interpret. In essence, they represent 
estimates of the number of standard deviations the observed residuals 
are from the zero residuals that would exist if model fit were perfect 
[i.e., Σ(θ) – S = 0.0]. Values > 2.58 are considered to be large (Jöreskog & 
Sörbom, 1993). In examining the standardized residual values presented 
in Table 3.6, we observe only one that exceeds the cutpoint of 2.58. As 
such, the residual value of –2.942 represents the covariance between the 
observed variables SDQ2N07 and SDQ2N34. From this information, we 
can conclude that the only statistically significant discrepancy of note 
lies with the covariance between the two variables noted.

Modification indices
The second type of information related to misspecification reflects the 
extent to which the hypothesized model is appropriately described. 
Evidence of misfit in this regard is captured by the modification indices 
(MIs), which can be conceptualized as a χ2 statistic with one degree of 
freedom (Jöreskog & Sörbom, 1993). Specifically, for each fixed parame-
ter specified, AMOS provides an MI, the value of which represents the 
expected drop in overall χ2 value if the parameter were to be freely esti-
mated in a subsequent run; all freely estimated parameters automatically 
have MI values equal to zero. Although this decrease in χ2 is expected to 
approximate the MI value, the actual differential can be larger. Associated 
with each MI is an expected parameter change (EPC) value (Saris, Satorra, 
& Sörbom, 1987), which is reported in the accompanying column labeled 
“Par Change.” This latter statistic represents the predicted estimated 
change, in either a positive or negative direction, for each fixed parameter 
in the model and yields important information regarding the sensitivity 
of the evaluation of fit to any reparameterization of the model.8 The MIs 
and accompanying EPC statistics related to our hypothesized model are 
presented in Table 3.7.
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As shown in Table 3.7, the MIs and EPCs are presented first for  possible 
covariances, followed by those for the regression weights. Recall that the 
only model parameters for which the MIs are applicable are those that 
were fixed to a value of 0.0. Thus, no values appear under the heading 
“Variances” as all parameters representing variances (factors and mea-
surement errors) were freely estimated.

In reviewing the parameters in the “Covariance” section, the only 
ones that make any substantive sense are those representing error cova-
riances. In this regard, only the parameter representing a covariance 
between err25 and err01 appears to be of any interest. Nonetheless, an 
MI value of this size (13.487), with an EPC value of .285, particularly as 
these values relate to an error covariance, can be considered of little con-
cern. Turning to the regression weights, I consider only two to make any 
substantive sense; these are SDQ2N07 <--- ESC, and SDQ2N34 <--- MSC. 
Both parameters represent cross-loadings. However, again, the MIs, and 
their associated EPC values, are not worthy of inclusion in a subsequently 
specified model. Of prime importance in determining whether or not to 
include additional parameters in the model is the extent to which (a) they 
are substantively meaningful, (b) the existing model exhibits adequate fit, 
and (c) the EPC value is substantial. Superimposed on this decision is the 
ever constant need for scientific parsimony. Because model respecification 
is commonly conducted in SEM in general, as well as in several applica-
tions highlighted in this book, I consider it important to provide you with 
a brief overview of the various issues related to these post hoc analyses.

Post hoc analyses
In the application of SEM in testing for the validity of various hypothesized 
models, the researcher will be faced, at some point, with the decision of 
whether or not to respecify and reestimate the model. If he or she elects to 
follow this route, it is important to realize that analyses then become framed 
within an exploratory, rather than a confirmatory, mode. In other words, once a 
hypothesized CFA model, for example, has been rejected, this spells the end 
of the confirmatory factor analytic approach, in its truest sense. Although 
CFA procedures continue to be used in any respecification and reestimation 
of the model, these analyses are exploratory in the sense that they focus on 
the detection of misfitting parameters in the originally hypothesized model. 
Such post hoc analyses are conventionally termed specification searches  
(see MacCallum, 1986). (The issue of post hoc model fitting is addressed 
further in Chapter 9 in the section dealing with cross-validation.)

The ultimate decision underscoring whether or not to proceed 
with a specification search is twofold. First and foremost, the researcher 
must determine whether the estimation of the targeted parameter is 
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substantively meaningful. If, indeed, it makes no sound substantive sense 
to free up the parameter exhibiting the largest MI, then one may wish to 
consider the parameter having the next largest MI value (Jöreskog, 1993). 
Second, one needs to consider whether or not the respecified model would 

Table 3.7 Selected AMOS Output for Hypothesized Four-Factor CFA 
Model: Modification Indices and Parameter Change Statistics

M.I. Par change

Covariances

err31<-->err19 8.956 –.167
err43<-->err19 7.497 .201
err34<-->GSC 8.192 .225
err46<-->err43 4.827 .159
err04<-->err10 5.669 .162
err40<-->err43 5.688 .155
err40<-->err04 8.596 –.224
err13<-->err04 6.418 .217
err25<-->err01 13.487 .285
err37<-->ASC 6.873 .079
err37<-->err31 4.041 .097
err37<-->err40 5.331 .141

Variances

Regression weights: (Group number 1—your model)

SDQ2N07<---ESC 7.427 –.242
SDQ2N07<---SDQ2N34 4.897 –.083
SDQ2N07<---SDQ2N28 5.434 –.112
SDQ2N07<---SDQ2N40 6.323 –.119
SDQ2N31<---SDQ2N37 5.952 .107
SDQ2N10<---SDQ2N04 4.038 .081
SDQ2N34<---MSC 6.323 –.173
SDQ2N34<---SDQ2N07 7.695 –.157
SDQ2N34<---SDQ2N31 5.316 –.148
SDQ2N34<---SDQ2N28 4.887 –.167
SDQ2N04<---SDQ2N13 5.029 .123
SDQ2N40<---SDQ2N04 5.883 –.110
SDQ2N01<---SDQ2N25 8.653 .173
SDQ2N13<---SDQ2N04 4.233 .104
SDQ2N25<---SDQ2N01 7.926 .140
SDQ2N37<---SDQ2N40 5.509 .103
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Chapter three: Testing for the factorial validity of a theoretical construct 91

lead to an overfitted model. The issue here is tied to the idea of knowing 
when to stop fitting the model, or, as Wheaton (1987) phrased the prob-
lem, “knowing … how much fit is enough without being too much fit” (p. 
123). In general, overfitting a model involves the specification of additional 
parameters in the model after having determined a criterion that reflects 
a minimally adequate fit. For example, an overfitted model can result from 
the inclusion of additional parameters that (a) are “fragile” in the sense of 
representing weak effects that are not likely replicable, (b) lead to a sig-
nificant inflation of standard errors, and (c) influence primary parameters 
in the model, albeit their own substantive meaningfulness is somewhat 
equivocal (Wheaton, 1987). Although correlated errors often fall into this 
latter category,9 there are many situations—particularly with respect to 
social psychological research—where these parameters can make strong 
substantive sense and therefore should be included in the model (Jöreskog 
& Sörbom, 1993).

Having laboriously worked our way through the process involved in 
evaluating the fit of a hypothesized model, what can we conclude regard-
ing the CFA model under scrutiny in this chapter? In answering this ques-
tion, we must necessarily pool all the information gleaned from our study 
of the AMOS output. Taking into account (a) the feasibility and statistical 
significance of all parameter estimates; (b) the substantially good fit of 
the model, with particular reference to the CFI (.962) and RMSEA (.048) 
values; and (c) the lack of any substantial evidence of model misfit, I con-
clude that any further incorporation of parameters into the model would 
result in an overfitted model. Indeed, MacCallum et al. (1992, p. 501) have 
cautioned that “when an initial model fits well, it is probably unwise to 
modify it to achieve even better fit because modifications may simply be 
fitting small idiosyncratic characteristics of the sample.” Adhering to this 
caveat, I conclude that the four-factor model schematically portrayed in 
Figure 3.1 represents an adequate description of self-concept structure for 
grade 7 adolescents.

Hypothesis 2: Self-concept is a two-factor structure
The model to be tested here (Model 2) postulates a priori that SC is a two-
factor structure consisting of GSC and ASC. As such, it argues against the 
viability of subject-specific academic SC factors. As with the four-factor 
model, the four GSC measures load onto the GSC factor; in contrast, all 
other measures load onto the ASC factor. This hypothesized model is rep-
resented schematically in Figure 3.11, which serves as the model specifica-
tion for AMOS Graphics.

In reviewing the graphical specification of Model 2, two points 
 pertinent to its modification are of interest. First, while the pattern of factor 
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Figure 3.11 Hypothesized two-factor CFA model of self-concept.
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loadings remains the same for the GSC and ASC measures, it changes for 
both the ESC and MSC measures in allowing them to load onto the ASC 
factor. Second, because only one of these eight ASC factor loadings needs 
to be fixed to 1.0, the two previously constrained parameters (SDQ2N10 ← 
ESC; SDQ2N07 ← MSC) are now freely estimated.

Selected AMOS text output: Hypothesized two-factor model

Only the goodness-of-fit statistics are relevant to the present application, 
and a selected group of these is presented in Table 3.8.

As indicated in the output, the χ2
(103) value of 455.926 represents an 

extremely poor fit to the data, and a substantial decrement from the over-
all fit of the four-factor model (∆χ2

(5) = 297.415). The gain of 5 degrees of 
freedom can be explained by the estimation of two fewer factor variances 
and five fewer factor covariances, albeit the estimation of two additional 
factor loadings (formerly SDQ2N10 ← ESC and SDQ2N07 ← MSC). As 
expected, all other indices of fit reflect the fact that self-concept structure 
is not well represented by the hypothesized two-factor model. In par-
ticular, the CFI value of .776 and RMSEA value of .114, together with a 
PCLOSE value of 0.00, are strongly indicative of inferior goodness-of-fit 
between the hypothesized two-factor model and the sample data. Finally, 
the ECVI value of 1.977, compared with the substantially lower value of 
0.888 for the hypothesized four-factor model, again confirms the inferior 
fit of Model 2.

Hypothesis 3: Self-concept is a one-factor structure
Although it now seems obvious that the structure of SC for grade  
7 adolescents is best represented by a multidimensional model, there 
are still researchers who contend that SC is a unidimensional construct. 
Thus, for purposes of completeness, and to address the issue of unidi-
mensionality, Byrne and Worth Gavin (1996) proceeded in testing the 
above hypothesis. However, because the one-factor model represents a 
restricted version of the two-factor model, and thus cannot possibly rep-
resent a better fitting model, in the interest of space, these analyses are 
not presented here.

In summary, it is evident from these analyses that both the two-fac-
tor and one-factor models of self-concept represent a misspecification of 
factorial structure for early adolescents. Based on these findings, then, 
Byrne and Worth Gavin (1996) concluded that SC is a multidimensional 
construct, which in their study comprised the four facets of general, aca-
demic, English, and math self-concepts.
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Table 3.8 Selected AMOS Output for Hypothesized Two-Factor  
CFA Model: Goodness-of-Fit Statistics

Model fit summary

CMIN

Model NPAR CMIN DF P
CMIN/

DF

Your model 33 455.926 103 .000 4.426
Saturated model 136 .000 0
Independence model 16 1696.728 120 .000 14.139

RMR, GFI

Model RMR GFI AGFI PGFI
Your model .182 .754 .675 .571
Saturated model .000 1.000
Independence model .628 .379 .296 .334

Baseline comparisons

Model
NFI RFI IFI TLI

CFIDelta 1 rho 1 Delta 2 rho 2
Your model .731 .687 .779 .739 .776
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE
Your model .114 .103 .124 .000
Independence model .223 .214 .233 .000

ECVI

Model ECVI LO 90 HI 90 MECVI
Your model 1.977 1.741 2.242 1.994
Saturated model 1.030 1.030 1.030 1.101
Independence model 6.548 6.058 7.067 6.557
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Endnotes
 1. The term uniqueness is used here in the factor analytic sense to mean a 

 composite of random measurement error and specific measurement error 
associated with a particular measuring instrument; in cross-sectional stud-
ies, the two cannot be separated (Gerbing & Anderson, 1984).

 2. As noted in Chapter 2, a set of measures is said to be congeneric if each 
 measure in the set purports to assess the same construct, except for errors of 
measurement (Jöreskog, 1971a).

 3. Inaccurate standard errors are commonly found when analyses are based on 
the correlation matrix (Bollen, 1989a; Boomsma, 1985; Boomsma & Hoogland, 
2001; Jöreskog, 1993).

 4. Wheaton (1987) later advocated that this ratio not be used.
 5. For alternate approaches to formulating baseline models, see Cudeck and 

Browne (1983), and Sobel and Bohrnstedt (1985).
 6. The PCFI, in keeping with Bentler’s recommended use of the CFI over the 

NFI, should be the index of choice. (see, e.g., Byrne, 1994a; Carlson & Mulaik, 
1993; Williams & Holahan, 1994).

 7. One possible limitation of the RMSEA, as noted by Mulaik (see Byrne, 1994a), 
is that it ignores the complexity of the model.

 8. Bentler (2005) has noted, however, that because these parameter change sta-
tistics are sensitive to the way by which variables and factors are scaled or 
identified, their absolute value is sometimes difficult to interpret.

 9. Typically, the misuse in this instance arises from the incorporation of cor-
related errors into the model purely on the basis of statistical fit and for the 
purpose of achieving a better fitting model.
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fourchapter 

Testing for the factorial 
validity of scores from a 
measuring instrument
(First-order CFA model)

For our second application, we once again examine a first-order confirma-
tory factor analytic (CFA) model. However, this time we test hypotheses 
bearing on a single measuring instrument, the Maslach Burnout Inventory 
(MBI; Maslach & Jackson, 1981, 1986), designed to measure three dimen-
sions of burnout, which the authors labeled emotional exhaustion (EE), 
depersonalization (DP), and reduced personal accomplishment (PA). The 
term burnout denotes the inability to function effectively in one’s job as 
a consequence of prolonged and extensive job-related stress; emotional 
exhaustion represents feelings of fatigue that develop as one’s energies 
become drained; depersonalization, the development of negative and uncar-
ing attitudes toward others; and reduced personal accomplishment, a deterio-
ration of self-confidence, and dissatisfaction in one’s achievements.

Purposes of the original study (Byrne, 1994c) from which this example 
is taken were to test for the validity and invariance of factorial structure 
within and across gender for elementary and secondary teachers. For the 
purposes of this chapter, however, only analyses bearing on the factorial 
validity of the MBI for a calibration sample of elementary male teachers 
(n = 372) are of interest.

Confirmatory factor analysis of a measuring instrument is most appro-
priately applied to measures that have been fully developed, and their fac-
tor structures validated. The legitimacy of CFA use, of course, is tied to 
its conceptual rationale as a hypothesis-testing approach to data analysis. 
That is to say, based on theory, empirical research, or a combination of 
both, the researcher postulates a model and then tests for its validity given 
the sample data. Thus, application of CFA procedures to assessment instru-
ments that are still in the initial stages of development represents a seri-
ous misuse of this analytic strategy. In testing for the validity of factorial 
structure for an assessment measure, the researcher seeks to determine the 
extent to which items designed to measure a particular factor (i.e., latent 
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construct) actually do so. In general, subscales of a measuring instrument 
are considered to represent the factors; all items comprising a particular 
subscale are therefore expected to load onto their related factor.

Given that the MBI has been commercially marketed since 1981, 
is the most widely used measure of occupational burnout, and has 
undergone substantial testing of its psychometric properties over the 
years (see, e.g., Byrne 1991, 1993, 1994a), it most certainly qualifies as 
a candidate for CFA research. Interestingly, until my 1991 study of the 
MBI, virtually all previous factor analytic work had been based only 
on exploratory procedures. We turn now to a description of this assess-
ment instrument.

The measuring instrument under study
The MBI is a 22-item instrument structured on a 7-point Likert-type scale 
that ranges from 0 ( feeling has never been experienced) to 6 ( feeling experi-
enced daily). It is composed of three subscales, each measuring one facet 
of burnout; the EE subscale comprises nine items, the DP subscale five, 
and the PA subscale eight. The original version of the MBI (Maslach & 
Jackson, 1981) was constructed from data based on samples of workers 
from a wide range of human service organizations. Subsequently, how-
ever, Maslach and Jackson (1986), in collaboration with Schwab, developed 
the Educators’ Survey (MBI Form Ed), a version of the instrument specifi-
cally designed for use with teachers. The MBI Form Ed parallels the origi-
nal version of the MBI except for the modified wording of certain items to 
make them more appropriate to a teacher’s work environment.

The hypothesized model
The CFA model of MBI structure hypothesizes a priori that (a) responses 
to the MBI can be explained by three factors, EE, DP, and PA; (b) each 
item has a nonzero loading on the burnout factor it was designed to 
measure, and zero loadings on all other factors; (c) the three factors are 
correlated; and (d) the error/uniqueness terms associated with the item 
measurements are uncorrelated. A schematic representation of this model 
is shown in Figure 4.1.1

Modeling with AMOS Graphics
The hypothesized three-factor model of MBI structure (see Figure 4.1) 
provided the specification input for analyses using AMOS Graphics. In 
Chapter 2, we reviewed the process involved in computing the number 
of degrees of freedom and, ultimately, in determining the identification 
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Figure 4.1 Hypothesized model of factorial structure for the Maslach Burnout 
inventory (Model 1).
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status of a hypothesized model. Although all such information (esti-
mated/fixed parameters; degrees of freedom) is provided in the Model/
Parameter Summary dialog boxes of the AMOS output, I still encourage 
you to make this practice part of your routine as, I believe, it forces you 
to think through the specification of your model. In the present case, the 
sample covariance matrix comprises a total of 253 (23 × 22 / 2) pieces 
of information (or sample moments). Of the 72 parameters in the model, 
only 47 are to be freely estimated (19 factor loadings, 22 error variances, 3 
factor variances, and 3 factor covariances); all others (25) are fixed param-
eters in the model (i.e., they are constrained to equal zero or some nonzero 
value). As a consequence, the hypothesized model is overidentified with 
206 (253 – 47) degrees of freedom.

Prior to submitting the model input to analysis, you will likely wish 
to review the Analysis Properties box (introduced in Chapter 3) in order to 
tailor the type of information to be provided on the AMOS output, on esti-
mation procedures, and/or on many other aspects of the analyses. In the 
present case, we are only interested in output file information. Recall that 
clicking on the Analysis Properties icon  yields the dialog box shown in 
Figure 4.2. For our purposes here, we request the modification indices 
(MIs), the standardized parameter estimates (provided in addition to the 
unstandardized estimates, which are default), and tests for normality and 
outliers, all of which are options you can choose when the Output tab is 
activated. In contrast to the MI specification in Chapter 3, however, we’ll 
stipulate a threshold of 10. As such, only MI estimates equal to or greater 
than 10 will be included in the output file.

Having specified the hypothesized three-factor CFA model of MBI 
structure, located the data file to be used for this analysis (as illustrated 
in Chapter 3), and selected the information to be included in the report-
ing of results, we are now ready to analyze the model. Surprisingly, after I 
clicked the Calculation icon, I was presented with the error message shown 
in Figure 4.3 in which the program is advising me that there is a prob-
lem with Item 20. However, clearly this message does not make any sense 
as Item 20 is definitely an observed variable in the model. Thus, I knew 
the problem had to lie elsewhere. The question, of course, was “Where?” 
As it turned out, there was a discrepancy in the labeling of the observed 
variables. Specifically, whereas item labels on the model showed a space 
between ITEM and its related number in the instrument (e.g., ITEM 20), this 
was not the case for the item labels in the data set; that is, there was no space 
between the word ITEM and 1, 2, and so on (e.g., ITEM1). In fact, several 
labels in addition to Item 20 had to be modified so that any such spaces had 
to be deleted. Once I made the model item labels consistent with those of 
the data file, the analyses proceeded with no further problems. I consider it 
important to point this error message out to you as it is almost guaranteed 
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that you will encounter it at some time with respect to your own work. Now 
that you know what triggers this message, you can quickly resolve the situ-
ation. The moral of the story, then, is to always double check your input data 
before running the analyses! Let’s now review the related output file.

Figure 4.2 AMOS Graphics: Analysis properties dialog box with output tab open.

Figure 4.3 AMOS Graphics: Error message triggered by calculation command.
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Selected AMOS output: The hypothesized model

In contrast to Chapter 3, only selected portions of this file will be reviewed 
and discussed. We examine first the model summary, assessment of nor-
mality and outliers, indices of fit for the model as a whole, and, finally, MIs 
with a view to pinpointing areas of model misspecification.

Model summary
As shown in Figure 4.4, estimation of the hypothesized model resulted 
in an overall χ2 value of 693.849 with 206 degrees of freedom and a prob-
ability value of .000. Of import also is the notation that the minimum was 
achieved. This latter statement indicates that AMOS was successful in 
estimating all model parameters, thereby resulting in a convergent solu-
tion. If, on the other hand, the program as not able to achieve this goal, it 
would mean that it was unsuccessful in being able to reach the minimum 
discrepancy value, as defined by the program in its comparison of the 
sample covariance and restricted covariance matrices. Typically, an out-
come of this sort results from incorrectly specified models and/or data in 
which there are linear dependencies among certain variables.

Assessment of normality
A critically important assumption in the conduct of SEM analyses in gen-
eral, and in the use of AMOS in particular (Arbuckle, 2007), is that the 
data are multivariate normal. This requirement is rooted in large sample 
theory from which the SEM methodology was spawned. Thus, before any 
analyses of data are undertaken, it is important to check that this crite-
rion has been met. Particularly problematic to SEM analyses are data that 

Figure 4.4 AMOS Graphics: Summary model statistics.
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are multivariate kurtotic, the situation where the multivariate distribu-
tion of the observed variables has both tails and peaks that differ from 
those characteristic of a multivariate normal distribution (see Raykov & 
Marcoulides, 2000). More specifically, in the case of multivariate positive 
kurtosis, the distributions will exhibit peakedness together with heavy (or 
thick) tails; conversely, multivariate negative kurtosis will yield flat distri-
butions with light tails (DeCarlo, 1997). To exemplify the most commonly 
found condition of multivariate kurtosis in SEM, let’s take the case of a 
Likert-scaled questionnaire, for which responses to certain items result 
in the majority of respondents selecting the same scale point. For each of 
these items, the score distribution would be extremely peaked (i.e., lepto-
kurtic); considered jointly, these particular items would reflect a multivar-
iately positive kurtotic distribution. (For an elaboration of both univariate 
and multivariate kurtosis, readers are referred to DeCarlo.)

Prerequisite to the assessment of multivariate normality is the need to 
check for univariate normality as the latter is a necessary, although not suf-
ficient, condition for multivariate normality (DeCarlo, 1997). Thus, we turn 
now to the results of our request on the Analysis Properties dialog box (see 
Figure 4.2) for an assessment of normality as it relates to the male teacher 
data used in this application. These results are presented in Figure 4.5.

Statistical research has shown that whereas skewness tends to impact 
tests of means, kurtosis severely affects tests of variances and covariances 
(DeCarlo, 1997). Given that SEM is based on the analysis of covariance 
structures, evidence of kurtosis is always of concern and, in particular, 
evidence of multivariate kurtosis, as it is known to be exceptionally detri-
mental in SEM analyses. With this in mind in turning first to the univari-
ate statistics, we focus only on the last two columns of Figure 4.5, where 
we find the univariate kurtosis value and its critical ratio (i.e., z-value) 
listed for each of the 22 MBI items. As shown, positive values range from 
.007 to 5.100 and negative values from –.597 to –1.156, yielding an overall 
mean univariate kurtosis value of 1.00. The standardized kurtosis index 
(β2) in a normal distribution has a value of 3, with larger values repre-
senting positive kurtosis and lesser values representing negative kurtosis. 
However, computer programs typically rescale this value by subtracting 
3 from the β2 value, thereby making zero the indicator of normal distribu-
tion and its sign the indicator of positive or negative kurtosis (DeCarlo; 
Kline, 2005; West, Finch, & Curran, 1995). Although there appears to be 
no clear consensus as to how large the nonzero values should be before 
conclusions of extreme kurtosis can be drawn (Kline, 2005), West et al. 
(1995) consider rescaled β2 values equal to or greater than 7 to be indica-
tive of early departure from normality. Using this value of 7 as a guide, a 
review of the kurtosis values reported in Figure 4.5 reveals no item to be 
substantially kurtotic.

RT63727.indb   103 7/6/09   7:25:53 PM



104 Structural equation modeling with AMOS 2nd edition

Of import is the fact that although the presence of nonnormal observed 
variables precludes the possibility of a multivariate normal distribution, 
the converse is not necessarily true. That is, regardless of whether the 
distribution of observed variables is univariate normal, the multivariate 
distribution can still be multivariate nonnormal (West et al., 1995). Thus, 
we turn now to the index of multivariate kurtosis and its critical ratio, 
both of which appear at the bottom of the kurtosis and critical ratio (C.R.) 
columns, respectively. Of most import here is the C.R. value, which in 
essence represents Mardia’s (1970, 1974) normalized estimate of multivari-
ate kurtosis, although it is not explicitly labeled as such (J. L. Arbuckle, 
personal communication, March 2008). When the sample size is very large 
and multivariately normal, Mardia’s normalized estimate is distributed 
as a unit normal variate such that large values reflect significant positive 
kurtosis and large negative values reflect significant negative kurtosis. 
Bentler (2005) has suggested that, in practice, values > 5.00 are indicative 
of data that are nonnormally distributed. In this application, the z-statistic 
of 37.978 is highly suggestive of nonnormality in the sample.

Figure 4.5 AMOS Graphics: Summary normality statistics.
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When data reveal evidence of multivariate kurtosis, interpretations 
based on the usual ML estimation may be problematic, and thus an alterna-
tive method of estimation is likely more appropriate. One approach to the 
analysis of nonnormal data is to base analyses on asymptotic distribution-
free (ADF) estimation (Browne, 1984a), which is available in AMOS by select-
ing this estimator from those offered on the Estimation tab of the Analysis 
Properties icon or drop-down View menu. However, it is now well-known that 
unless sample sizes are extremely large (1,000 to 5,000 cases; West et al., 1995), 
the ADF estimator performs very poorly and can yield severely distorted 
estimated values and standard errors (Curran et al., 1996; Hu, Bentler, & 
Kano, 1992; West et al.). More recently, statistical research has suggested that, 
at the very least, sample sizes should be greater than 10 times the number of 
estimated parameters, otherwise the results from the ADF method gener-
ally cannot be trusted (Raykov & Marcoulides, 2000). (See Byrne, 1995, for 
an example of the extent to which estimates can become distorted using the 
ADF method with a less than adequate sample size.) As shown in Figure 4.4, 
the model under study in this chapter has 47 freely estimated parameters, 
thereby suggesting a minimal sample size of 470. Given that our current sam-
ple size is 372, we cannot realistically use the ADF method of estimation.

In contrast to the ADF method of estimation, Chou, Bentler, and Satorra 
(1991) and Hu et al. (1992) have argued that it may be more appropriate to 
correct the test statistic, rather than use a different mode of estimation. 
Satorra and Bentler (1988, 1994) developed such a statistic that incorporates 
a scaling correction for the χ2 statistic (S–Bχ2) when distributional assump-
tions are violated; its computation takes into account the model, the esti-
mation method, and the sample kurtosis values. The S–Bχ2 has been shown 
to be the most reliable test statistic for evaluating mean and covariance 
structure models under various distributions and sample sizes (Curran 
et al., 1996; Hu et al.). Although the Satorra-Bentler robust method works 
very well with smaller sample sizes such as ours (see, e.g., Byrne, 2006), this 
method unfortunately is not available in the AMOS program. Thus, we 
will continue to base our analyses on ML estimation. However, given that 
I have analyzed the same data using the Satorra-Bentler robust approach 
in the EQS program (Byrne, 2006), it will be instructive to see the extent 
to which the results deviate between the two estimation methods. Thus, a 
brief comparison of both the overall goodness-of-fit and selected parameter 
statistics for the final model will be presented at the end of the chapter.

Assessment of multivariate outliers
Outliers represent cases whose scores are substantially different from all 
the others in a particular set of data. A univariate outlier has an extreme 
score on a single variable, whereas a multivariate outlier has extreme 
scores on two or more variables (Kline, 2005). A common approach to 
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the  detection of  multivariate outliers is the computation of the squared 
Mahalanobis distance (D2) for each case. This statistic measures the dis-
tance in standard deviation units between a set of scores for one case and 
the sample means for all variables (centroids). Typically, an outlying case 
will have a D2 value that stands distinctively apart from all the other D2 
values. A review of these values reported in Figure 4.6 shows minimal 
evidence of serious multivariate outliers.

Model evaluation

Goodness-of-fit summary
Because the various indices of model fit provided by the AMOS program 
were discussed in Chapter 3, model evaluation throughout the remaining 

Figure 4.6 AMOS Graphics: Summary outlier statistics.
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chapters will be limited to those summarized in Table 4.1. These criteria 
were chosen on the basis of (a) their variant approaches to the assessment 
of model fit (see Hoyle, 1995b), and (b) their support in the literature as 
important indices of fit that should be reported.2 This selection, of course, 
in no way implies that the remaining criteria are unimportant. Rather, 
it addresses the need for users to select a subset of goodness-of-fit indi-
ces from the generous quantity provided by the AMOS program.3 These 
selected indices of fit are presented in Table 4.1.

In reviewing these criteria in terms of their optimal values (see 
Chapter 3), we can see that they are consistent in their reflection of an ill-
fitting model. For example, the CFA value of .848 is indicative of a very poor 
fit of the model to the data. Thus, it is apparent that some modification in 
specification is needed in order to identify a model that better represents the 
sample data. To assist us in pinpointing possible areas of misfit, we examine 
the modification indices. Of course, as noted in Chapter 3, it is important 
to realize that once we have determined that the hypothesized model rep-
resents a poor fit to the data (i.e., the null hypothesis has been rejected), 
and then embark in post hoc model fitting to identify areas of misfit in the 

Table 4.1 Selected AMOS Output for Hypothesized Model:  
Goodness-of-Fit Statistics

Model fit summary

CMIN

Model NPAR CMIN DF P
CMIN/

DF

Your model 47 693.849 206 .000 3.368
Saturated model 253 .000 0
Independence 
model

22 3442.988 231 .000 14.905

Baseline comparisons

Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI

Your model .798 .774 .849 .830 .848
Saturated model 1.000 1.000 1.000
Independence 
model

.000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Your model .080 .073 .086 .000
Independence 
model

.194 .188 .199 .000
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model, we cease to operate in a confirmatory mode of analysis. All model 
specification and estimation henceforth represent exploratory analyses.

Before we examine the MIs as markers of possible model misspecifica-
tion, however, let’s divert briefly to review the AMOS Reference Guide dialog 
boxes pertinent to the PCLOSE statistic associated with the RMSEA, as shown 
in Figure 4.7. The initial box related to the PCLOSE statistic was generated 
by clicking on the .000 for Your Model. As is evident, information presented 
in this box explains the meaning of the PCLOSE statistic. Subsequently 
clicking on Assumptions then triggers a list of explanatory comments associ-
ated with various assumptions underlying SEM. These instructive AMOS 
Reference Guide dialog boxes are readily accessed for countless other statis-
tics and other phenomena associated with the AMOS program.

Modification indices
We turn now to the MIs presented in Table 4.2. Based on the initially 
hypothesized model (Model 1), all factor loadings and error covariance 
terms that were fixed to a value of 0.0 are of substantial interest as they 
represent the only meaningful sources of misspecification in a CFA model. 
As such, large MIs argue for the presence of factor cross-loadings (i.e., 
a loading on more than one factor) and error covariances, respectively. 
However, consistent with other SEM programs, AMOS computes an MI for 
all parameters implicitly assumed to be zero, as well as for those that are 
explicitly fixed to zero or some other, nonzero value. In reviewing the list 
of MIs in Table 4.2, for example, you will see suggested regression paths 
between two observed variables (e.g., ITEM4 ← ITEM7) and suggested 
covariances between error terms and factors (e.g., err12 ↔ EMOTIONAL 
EXHAUSTION), neither of which makes any substantive sense. Given the 

Figure 4.7 AMOS Graphics: AMOS reference guide dialog box.
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Table 4.2 Selected AMOS Output for Hypothesized Model:  
Modification Indices

M.I. Par change

Covariances
err7         <--> err4 31.870 .200
err12       <--> EMOTIONAL_EXHAUSTION 34.267 –.349
err18       <--> err7 10.386 –.128
err19       <--> err18 14.832 .200
err21       <--> err4 12.573 .193
err21       <--> err7 31.774 .250
err11       <--> err10 20.863 .319
err15       <--> err5 13.459 .271
err1         <--> PERSONAL_ACCOMPLISHMENT 24.032 .130
err2         <--> err1 74.802 .557
err3         <--> err12 15.462 –.255
err6         <--> err5 17.117 .354
err13       <-->PERSONAL_ACCOMPLISHMENT 11.203 –.089
err14       <-->err6 11.021 –.304
err16       <-->err6 88.728 .714
err20       <-->err8 12.451 .202
err20       <-->err13 12.114 .220

Regression weights
ITEM4    <--- ITEM7 22.235 .267
ITEM7    <--- ITEM4 24.640 .193
ITEM7    <--- ITEM21 23.531 .149
ITEM12 <--- EMOTIONAL_EXHAUSTION 33.856 –.256
ITEM12    <--- ITEM1 23.705 –.158
ITEM12    <--- ITEM2 21.917 –.163
ITEM12    <--- ITEM3 44.109 –.206
ITEM12    <--- ITEM8 35.531 –.186
ITEM12    <--- ITEM14 11.569 –.106
ITEM12    <--- ITEM16 21.358 –.173
ITEM12    <--- ITEM20 13.784 –.141
ITEM21    <--- ITEM7 22.181 .334
ITEM5         <--- ITEM6 11.231 .142
ITEM11     <--- ITEM10 10.453 .137
ITEM1         <--- PERSONAL_ACCOMPLISHMENT 23.667 .720
ITEM1         <--- ITEM9 19.493 .197
ITEM1         <--- ITEM17 10.809 .227

(continued)
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meaninglessness of these MIs, then, we focus solely on those representing 
cross-loadings and error covariances.

Turning first to the MIs related to the Covariances, we see very clear 
evidence of misspecification associated with the pairing of error terms 
associated with Items 1 and 2 (err2↔err1; MI = 74.802) and those associ-
ated with Items 6 and 16 (err16↔err6; MI = 88.728). Although, admittedly, 
there are a few additionally quite large MI values shown, these two stand 
apart in that they are substantially larger than the others; they represent 
misspecified error covariances.4 These measurement error covariances 
represent systematic, rather than random, measurement error in item 
responses, and they may derive from characteristics specific either to the 
items or to the respondents (Aish & Jöreskog, 1990). For example, if these 
parameters reflect item characteristics, they may represent a small omit-
ted factor. If, on the other hand, they represent respondent characteristics, 
they may reflect bias such as yea-saying or nay-saying, social desirability, 
and the like (Aish & Jöreskog). Another type of method effect that can 
trigger error covariances is a high degree of overlap in item content. Such 
redundancy occurs when an item, although worded differently, essentially 
asks the same question. I believe the latter situation to be the case here. 
For example, Item 16 asks whether working with people directly puts too 
much stress on the respondent, while Item 6 asks whether working with 
people all day puts a real strain on him or her.5

Although a review of the MIs for the Regression Weights (i.e., fac-
tor loadings) reveals four parameters indicative of  cross-loadings 

Table 4.2 Selected AMOS Output for Hypothesized Model: Modification  
Indices (Continued)

M.I. Par change

Regression weights
ITEM1   <--- ITEM18 16.058 .185
ITEM1   <--- ITEM19 14.688 .189
ITEM1   <--- ITEM2 31.830 .215
ITEM2   <--- PERSONAL_ACCOMPLISHMENT 10.507 .469
ITEM2   <--- ITEM9 13.645 .161
ITEM2   <--- ITEM1 27.403 .181
ITEM6   <--- ITEM5 15.020 .173
ITEM6   <--- ITEM16 50.262 .327
ITEM13 <--- PERSONAL_ACCOMPLISHMENT 10.418 –.481
ITEM13 <--- ITEM9 15.314 –.176
ITEM13 <--- ITEM19 11.414 –.168
ITEM16 <--- ITEM6 52.454 .272
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(ITEM12 ← EMOTIONAL EXHAUSTION; ITEM1 ← PERSONAL 
ACCOMPLISHMENT; ITEM2 ← PERSONAL ACCOMPLISHMENT; 
ITEM13 ← PERSONAL ACCOMPLISHMENT), I draw your attention to 
the one with the highest value (MI = 33.856), which is highlighted in bold-
face type.6 This parameter, which represents the cross-loading of Item 12 
on the EE factor, stands apart from the three other possible cross-loading 
misspecifications. Such misspecification, for example, could mean that 
Item 12, in addition to measuring personal accomplishment, also mea-
sures emotional exhaustion; alternatively, it could indicate that, although 
Item 12 was postulated to load on the PA factor, it may load more appro-
priately on the EE factor.

Post hoc analyses
Provided with information related both to model fit and to possible areas 
of model misspecification, a researcher may wish to consider respecifying 
an originally hypothesized model. As emphasized in Chapter 3, should 
this be the case, it is critically important to be cognizant of both the explor-
atory nature of, and the dangers associated with, the process of post hoc 
model fitting. Having determined (a) inadequate fit of the hypothesized 
model to the sample data, and (b) at least two misspecified parameters in 
the model (i.e., the two error covariances were specified as zero), it seems 
both reasonable and logical that we now move into exploratory mode and 
attempt to modify this model in a sound and responsible manner. Thus, 
for didactic purposes in illustrating the various aspects of post hoc model 
fitting, we’ll proceed to respecify the initially hypothesized model of MBI 
structure taking this information into account.

Model respecification that includes correlated errors, as with other 
parameters, must be supported by a strong substantive and/or empirical 
rationale (Jöreskog, 1993), and I believe that this condition exists here. In 
light of (a) apparent item content overlap, (b) the replication of these same 
error covariances in previous MBI research (e.g., Byrne, 1991, 1993), and 
(c) Bentler and Chou’s (1987) admonition that forcing large error terms to 
be uncorrelated is rarely appropriate with real data, I consider respeci-
fication of this initial model to be justified. Testing of this respecified 
model (Model 2) now falls within the framework of post hoc analyses.

Let’s return now to AMOS Graphics and the respecification of Model 
1 in structuring Model 2.

Model 2
Respecification of the hypothesized model of MBI structure involves the 
addition of freely estimated parameters to the model. However, because 
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the estimation of MIs in AMOS is based on a univariate approach (cf. EQS 
and a multivariate approach), it is critical that we add only one parameter 
at a time to the model as the MI values can change substantially from 
one tested parameterization to another. Thus, in building Model 2, it 
seems most reasonable to proceed first in adding to the model the error 
covariance having the largest MI. As shown in Table 4.2, this parame-
ter represents the error terms for Items 6 and 16 and, according to the 
Parameter Change statistic, should result in a parameter estimated value of 
approximately .714. Of related interest is the section in Table 4.2 labeled 
Regression Weights, where you see, highlighted in italics, two suggested 
regression paths. Although technically meaningless, because it makes 
no substantive sense to specify these two parameters (ITEM6 ← ITEM16; 
ITEM16 ← ITEM6), I draw your attention to them only as they reflect on 
the problematic link between Items 6 and 16. More realistically, this issue 
is addressed through the specification of an error covariance.

Turning to AMOS Graphics, we modify the initially hypothesized 
model by adding a covariance between these Item 16 and Item 6 error 
terms by first clicking on the Covariance icon , then on err16, and, finally, 
on err6 as shown in Figure 4.8. The modified model structure for Model 2 
is presented in Figure 4.9.

Figure 4.8 AMOS Graphics: Illustrated specification of covariance between error 
terms associated with items 16 and 6.
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Figure 4.9 Respecified model of factorial structure for the Maslach Burnout 
Inventory (Model 2).
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Selected AMOS output: Model 2

Goodness-of-fit statistics related to Model 2 revealed that incorporation 
of the error covariance between Items 6 and 16 made a substantially large 
improvement to model fit. In particular, the overall chi square value 
decreased from 693.849 to 596.124 and the RMSEA from .080 to .072, while 
the CFI value increased from .848 to .878. In assessing the extent to which 
a respecified model exhibits improvement in fit, it has become custom-
ary when using a univariate approach to determine if the difference in fit 
between the two models is statistically significant. As such, the researcher 
examines the difference in χ2 (∆χ2) values between the two models. Doing 
so, however, presumes that the two models are nested.7 The differential 
between the models represents a measurement of the overidentifying con-
straints and is itself χ2 distributed, with degrees of freedom equal to the 
difference in degrees of freedom (∆df); it can thus be tested statistically, 
with a significant ∆χ2 indicating substantial improvement in model fit. 
Comparison of Model 2 (χ2

(205) = 596.124) with Model 1 (χ2
(205) = 693.849), for 

example, yields a difference in χ2 value (∆χ2
(1)) of 97.725.8

The unstandardized estimate for this error covariance parameter is 
.733, which is highly significant (C.R. = 8.046) and even larger than the 
predicted value suggested by the Parameter Change statistic noted earlier; 
the standardized parameter estimate is .497, thereby reflecting a very 
strong error correlation!

Turning to the resulting MIs for Model 2 (see Table 4.3), we observe 
that the error covariance related to Items 1 and 2 remains a strongly mis-
specified parameter in the model, with the estimated parameter change 
statistic suggesting that if this parameter were incorporated into the 
model, it would result in an estimated value of approximately .527. As 
with the error covariance between Items 6 and 16, the one between Items 
1 and 2 suggests redundancy due to content overlap. Item 1 asks if the 
respondent feels emotionally drained from his or her work, whereas Item 
2 asks if the respondent feels used up at the end of the workday. Clearly, 
there appears to be an overlap of content between these two items.

Given the strength of this MI and, again, the obvious overlap of item 
content, I recommend that this error covariance parameter also be included 
in the model. This modified model (Model 3) is shown in Figure 4.10.

Model 3
Selected AMOS output: Model 3

Goodness-of-fit statistics related to Model 3 again revealed a statistically 
significant improvement in model fit between this model and Model 2 
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Table 4.3 Selected AMOS Output for Model 2: Modification Indices

M.I. Par change

Covariances
err7         <--> err4 31.820 .200
err12       <--> EMOTIONAL_EXHAUSTION 34.617 –.357
err18      <--> err7 10.438 –.128
err19      <--> err18 14.832 .200
err21      <--> err4 12.536 .193
err21      <--> err7 31.737 .250
err11      <--> err10 20.105 .312
err15      <--> err5 13.899 .276
err1        <--> PERSONAL_ACCOMPLISHMENT 23.297 .127
err2        <--> err1 69.604 .527
err3        <--> err12 15.245 –.253
err6        <--> err5 10.677 .246
err13      <--> PERSONAL_ACCOMPLISHMENT 12.538 –.095
err13      <--> err1 10.786 –.217
err13      <--> err2 10.831 –.213
err20      <--> err2 11.083 –.203
err20      <--> err8 11.789 .196
err20      <--> err13 12.356 .224

Regression weights
ITEM4    <--- ITEM7 22.192 .267
ITEM7    <--- ITEM4 24.589 .193
ITEM7    <--- ITEM21 23.495 .149
ITEM12 <--- EMOTIONAL_EXHAUSTION 34.587 –.257
ITEM12 <--- ITEM1 23.888 –.158
ITEM12 <--- ITEM2 22.092 –.164
ITEM12 <--- iTEM3 44.361 –.207
ITEM12 <--- ITEM8 35.809 –.187
ITEM12 <--- ITEM14 11.675 –.107
ITEM12 <--- ITEM16 21.653 –.174
ITEM12 <--- ITEM20 13.933 –.142
ITEM21 <--- ITEM7 22.148 .334
ITEM5    <--- ITEM6 12.189 .148
ITEM11  <--- ITEM10 10.025 .134
ITEM1    <--- PERSONAL_ACCOMPLISHMENT 23.397 .708
ITEM1    <--- ITEM9 19.875 .197
ITEM1    <--- ITEM17 10.128 .217

(continued)
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(χ2
(204) = 519.082; ∆χ2

(1) = 77.04), and substantial differences in the CFI (.902 
versus .878) and RMSEA (.065 versus .072) values.

Turning to the MIs, which are presented in Table 4.4, we see that there 
are still at least two error covariances with fairly large MIs (err7 ↔ err4 and 
err 21 ↔ err7). However, in reviewing the items associated with these two 
error parameters, I believe that the substantive rationale for their inclu-
sion is very weak and therefore they should not be considered for addi-
tion to the model. On the other hand, I do see reason for considering the 
specification of a cross-loading with respect to Item 12 on Factor 1. In the 
initially hypothesized model, Item 12 was specified as loading on Factor 3 
(Reduced Personal Accomplishment), yet the MI is telling us that this item 
should additionally load on Factor 1 (Emotional Exhaustion). In trying to 
understand why this cross-loading might be occurring, let’s take a look at 
the essence of the item content, which asks for a level of agreement or dis-
agreement with the statement that the respondent feels very energetic.

Although this item was deemed by Maslach and Jackson (1981, 1986) 
to measure a sense of personal accomplishment, it seems both evident 
and logical that it also taps into one’s feelings of emotional exhaustion. 
Ideally, items on a measuring instrument should clearly target only one 
of its underlying constructs (or factors). The question related to our anal-
ysis of the MBI, however, is whether or not to include this parameter in a 
third respecified model. Provided with some justification for the double-
loading effect, together with evidence from the literature that this same 
cross-loading has been noted in other research, I consider it appropriate 
to respecify the model (Model 4) with this parameter freely estimated.

In modifying Model 3 to include the cross-loading of Item 12 on Factor 
1 (Emotional Exhaustion), we simply use the Path icon  to link the two. 
The resulting Model 4 is presented in Figure 4.11.

Table 4.3 Selected AMOS Output for Model 2: Modification Indices (Continued)

M.I. Par change
Regression weights

ITEM1    <--- ITEM18 15.932 .182
ITEM1   <--- ITEM19 14.134 .184
ITEM1   <--- ITEM2 28.676 .202
ITEM2   <--- PERSONAL_ACCOMPLISHMENT 10.090 .455
ITEM2   <--- ITEM9 13.750 .160
ITEM2   <--- ITEM1 24.438 .169
ITEM13  <--- PERSONAL_ACCOMPLISHMENT 12.165 –.523
ITEM13 <--- ITEM9 16.039 –.182
ITEM13 <--- ITEM18 10.917 –.155
ITEM13 <--- ITEM19 12.992 –.181
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Figure 4.10 Respecified model of factorial structure for the maslach burnout 
inventory (Model 3).
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Model 4
Selected AMOS output: Model 4

Not unexpectedly, goodness-of-fit indices related to Model 4 show a fur-
ther statistically significant drop in the chi-square value from that of 
Model 3 (χ2

(203) = 477.298; ∆χ2
(1) = 41.784). Likewise, there is evident improve-

ment from Model 3 with respect to both the RMSEA (.060 versus .065) and 
the CFI (.915 versus .902).

Table 4.4 Selected AMOS Output for Model 3: Modification Indices

M.I. Par change

Covariances
err7         <--> err4 31.968 .201
err12       <--> EMOTIONAL_EXHAUSTION 33.722 –.330
err18       <--> err7 10.252 –.127
err19       <--> err18 14.833 .200
err21       <--> err4 12.625 .193
err21       <--> err7 31.888 .251
err11       <--> err10 20.155 .312
err15       <--> err5 13.792 .275
err1         <--> PERSONAL_ACCOMPLISHMENT 14.382 .090
err3         <--> err12 16.376 –.265
err3         <--> err1 12.942 .231
err6         <--> err5 10.753 .247

Regression weights
ITEM4    <--- ITEM7 22.336 .268
ITEM7    <--- ITEM4 24.730 .193
ITEM7    <--- ITEM21 23.633 .149
ITEM12 <--- EMOTIONAL_EXHAUSTION 32.656 –.265
ITEM12  <--- ITEM1 23.462 –.157
ITEM12  <--- ITEM2 21.722 –.162
ITEM12  <--- iTEM3 43.563 –.205
ITEM12  <--- ITEM8 34.864 –.184
ITEM12  <--- ITEM14 11.331 –.105
ITEM12  <--- ITEM16 21.145 –.172
ITEM12  <--- ITEM20 13.396 –.139
ITEM21  <--- ITEM7 22.294 .335
ITEM5    <--- ITEM6 11.953 .146
ITEM11  <--- ITEM10 10.063 .134
ITEM1    <--- PERSONAL_ACCOMPLISHMENT 11.766 .458
ITEM13  <--- ITEM9 11.958 –.154
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Figure 4.11 Final model of factorial structure for the Maslach Burnout Inventory 
(Model 4).
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With respect to the MIs, which are shown in Table 4.5, I see no evidence 
of substantively reasonable misspecification in Model 4. Although, admit-
tedly, the fit of .92 is not as high as I would like it to be, I am cognizant of the 
importance of modifying the model to include only those parameters that 
are substantively meaningful and relevant. Thus, on the basis of findings 
related to the test of validity for the MBI, I consider Model 4 to represent 
the final best-fitting and most parsimonious model to represent the data.

Finally, let’s examine both the unstandardized and standardized 
factor loadings, factor covariances, and error covariances, which are pre-
sented in Tables 4.6 and 4.7, respectively. We note first that in reviewing 
the unstandardized estimates, all are statistically significant given C.R. 
values > 1.96.

Turning first to the unstandardized factor loadings, it is of particular 
interest to examine results for Item 12 for which its targeted loading was 

Table 4.5 Selected AMOS Output for Model 4: Modification Indices

M.I. Par change

Covariances
err7        <--> err4 30.516 .195
err18      <--> err7 12.126 –.138
err19      <--> err4 10.292 –.149
err19      <--> err18 14.385 .197
err21      <--> err4 11.866 .187
err21      <--> err7 30.835 .245
err11      <--> err10 19.730 .308
err15      <--> err5 13.986 .277
err1        <--> PERSONAL_ACCOMPLISHMENT 14.570 .094
err3        <--> err12 10.790 –.202
err3        <--> err1 12.005 .220
err6        <--> err5 10.989 .250
err13      <--> err12 13.020 .208

Regression weights
ITEM4   <--- ITEM7 20.986 .259
ITEM7   <--- ITEM4 23.327 .187
ITEM7  <--- ITEM21 22.702 .146
ITEM21 <--- ITEM7 21.218 .326
ITEM5   <--- ITEM6 12.141 .148
ITEM1   <--- PERSONAL_ACCOMPLISHMENT 12.559 .465
ITEM13 <--- ITEM9 12.332 –.158
ITEM13 <--- ITEM19 10.882 –.164
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on Personal Accomplishment (Factor 3) and its cross-loading on Emotional 
Exhaustion (Factor 1). As you will readily observe, the loading of this 
item on both factors not only is statistically significant but in addition is 
basically of the same degree of intensity. In checking its unstandardized 
estimate in Table 4.6, we see that the critical ratio for both parameters is 
almost identical (6.035 versus –6.389), although one has a positive sign and 
one a negative sign. Given that the item content states that the respon-
dent feels very energetic, the negative path associated with the Emotional 
Exhaustion factor is perfectly reasonable. Turning to the related standard-
ized estimates in Table 4.7, it is interesting to note that the estimated value 
for the targeted loading (.425) is only slightly higher than it is for the cross-
loading (–.324), both being of moderate strength.

Presented with these findings and maintaining a watchful eye on 
parsimony, it behooves us at this point to test a model in which Item 12 
is specified as loading onto the alternate factor (Emotional Exhaustion), 
rather than the one on which it was originally designed to load (Personal 
Accomplishment); as such, there is now no specified cross-loading. In the 
interest of space, however, I simply report the most important criteria deter-
mined from this alternate model (Model 3a) compared with Model 3 (see 
Figure 4.10) in which Item 12 was specified as loading on Factor 3, its origi-
nal targeted factor. Accordingly, findings from the estimation of this alter-
native model (Model 3a) revealed (a) the model to be slightly less well fitting 
(CFI = .895) than for Model 3 (CFI = .902), and (b) the standardized estimate 
to be weaker (–.468) than for Model 3 (.554). As might be expected, a review 
of the MIs identified the loading of Item 12 on Factor 3 (MI = 49.661) to be the 
top candidate for considered respecification in a subsequent model; by com-
parison, the related MI in Model 3 was 32.656 and identified the loading of 
Item 12 on Factor 1 as the top candidate for respecification (see Table 4.4).

From these comparative results between Model 3 and Model 3a (the 
alternative model), it seems evident that Item 12 is problematic and defi-
nitely in need of content revision, a task that is definitely out of my hands. 
Thus, provided with evidence of no clear loading of this item, it seems most 
appropriate to leave the cross-loading in place, as in Model 4 (Figure 4.11).

Comparison with robust analyses based on 
the Satorra-Bentler scaled statistic

Given that the analyses in this chapter were based on the default ML 
method with no consideration of the multivariate nonnormality of the 
data noted earlier, I consider it both interesting and instructive to compare 
the overall goodness-of-fit pertinent to Model 4 as well as key statistics 
for a selected few of its estimated parameters. The major thrust of the 
S-B Robust ML approach in addressing nonnormality is that it provides 

RT63727.indb   125 7/6/09   7:26:01 PM



126 Structural equation modeling with AMOS 2nd edition

a scaled statistic (S-Bχ2) which corrects the usual ML χ2 value, as well as 
the standard errors (Bentler & Dijkstra, 1985; Satorra & Bentler, 1988, 1994). 
Although the ML estimates will remain the same for both programs, the 
standard errors of these estimates will differ in accordance with the extent 
to which the data are multivariate nonnormal. Because the critical ratio 
represents the estimate divided by its standard error, the corrected criti-
cal ratio for each parameter may ultimately lead to different conclusions 
regarding its statistical significance. This comparison of model fit as well 
as parameter statistics are presented in Table 4.8.

Table 4.8 Comparison of Model Fit and Parameter Statistics  
Based on ML and Robust ML Estimation: Model 4

ML estimation DF Robust ML estimation

Model fit statistics

Chi-square 477.298 203 399.156
CFI .915 .927
RMSEA .060 .051
RMSEA 90% C.I. .053, .067 .044, .058

Parameter statistics
Err16 ↔ Err6

Estimate .710 .710
Standard error .090 .122
Critical ratio 7.884 5.815

Err2 ↔ Err1

Estimate .589 .589
Standard error .083 .086
Critical ratio 7.129 6.869

Item12 ← PA (Factor 3)

Estimate 1.135 1.135
Standard error .188 .202
Critical ratio 6.035 5.618

Item12 ← EE (Factor 1)

Estimate –.317 –.317
Standard error .050 .054
Critical ratio –6.389 –5.911

Note: DF = Degrees of freedom.
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Turning first to the goodness-of-fit statistics, it is evident that the S-B 
corrected chi-square value is substantially lower than that of the uncor-
rected ML value (399.156 versus 477.298). Such a large difference between 
the two chi-square values provides evidence of substantial nonnormal-
ity of the data. Because calculation of the CFI necessarily involves the χ2 
value, you will note also a substantial increase in the robust CFI value 
(.927 versus .915). Finally, we note that the corrected RMSEA value is also 
lower (.044) than its related uncorrected value (.060).

In reviewing the parameter statistics, it is interesting to note that 
although the standard errors underwent correction to take nonnormal-
ity into account, thereby yielding critical ratios that differed across the 
AMOS and EQS programs, the final conclusion regarding the statistical 
significance of the estimated parameters remains the same. Importantly, 
however, it should be noted that the uncorrected ML approach tended to 
overestimate the degree to which the estimates were statistically signifi-
cant. Based on this information, we can feel confident that, although we 
were unable to directly address the issue of nonnormality in the data for 
technical reasons, and despite the tendency of the uncorrected ML estima-
tor to overestimate the statistical significance of these estimates, overall 
conclusions were consistent across CFA estimation approaches in suggest-
ing Model 4 to most appropriately represent MBI factorial structure.

Endnotes
 1. As was the case in Chapter 3, the first of each congeneric set of items was 

constrained to 1.00.
 2. For example, Sugawara and MacCallum (1993) have recommended that 

the RMSEA always be reported when maximum likelihood estimation is 
the only method used because it has been found to yield consistent results 
across estimation procedures when the model is well specified; MacCallum, 
Browne, & Sugawara (1996) extended this caveat to include confidence 
intervals.

 3. Although included here, due to the formatting of the output file, several fit 
indices provide basically the same information. For example, the AIC, CAIC, 
and ECVI each serve the same function in addressing parsimony. With 
respect to the NFI, Bentler (1990) has recommended that the CFI be the index 
of choice.

 4. Although these misspecified parameters correctly represent error covari-
ances, they are commonly termed correlated errors.

 5. Unfortunately, refusal of copyright permission by the MBI test publisher pre-
vents me from presenting the actual item statements for your perusal.

 6. Although you will note larger MIs associated with the regression weights 
(e.g., 52.454; ITEM16 ← ITEM6), these values, as noted earlier, do not repre-
sent cross-loadings and are in essence meaningless.
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 7. Nested models are hierarchically related to one another in the sense that 
their parameter sets are subsets of one another (i.e., particular parameters are 
freely estimated in one model, but fixed to zero in a second model) (Bentler 
& Chou, 1987; Bollen, 1989a).

 8. One parameter, previously specified as fixed in the initially hypothesized 
model (Model 1), was specified as free in Model 2, thereby using up one 
degree of freedom (i.e., one less degree of freedom).
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fivechapter 

Testing for the factorial 
validity of scores from a 
measuring instrument
(Second-order CFA model)

In contrast to the two previous applications that focused on CFA first-order 
models, the present application examines a CFA model that comprises a 
second-order factor. As such, we test hypotheses related to the Chinese 
version (Chinese Behavioral Sciences Society, 2000) of the Beck Depression 
Inventory—II (BDI-II; Beck, Steer, & Brown, 1996) as it bears on a commu-
nity sample of Hong Kong adolescents. The example is taken from a study 
by Byrne, Stewart, and Lee (2004). Although this particular study was 
based on an updated version of the original BDI (Beck, Ward, Mendelson, 
Mock, & Erbaugh, 1961), it nonetheless follows from a series of studies that 
have tested for the validity of second-order BDI factorial structure for high 
school adolescents in Canada (Byrne & Baron, 1993, 1994; Byrne, Baron, 
& Campbell, 1993, 1994), Sweden (Byrne, Baron, Larsson, & Melin, 1995, 
1996), and Bulgaria (Byrne, Baron, & Balev, 1996, 1998). The purposes of 
the original Byrne et al. (2004) study were to test for the construct valid-
ity of the Chinese version of the BDI-II (C-BDI-II) structure based on three 
independent groups of students drawn from 11 Hong Kong high schools. 
In this example, we focus only on the Group 2 data (N = 486), which served 
as the calibration sample in testing for the factorial validity of the C-BDI-II. 
(For further details regarding the sample, analyses, and results, readers are 
referred to the original article, Byrne et al., 2004.)

The C-BDI-II is a 21-item scale that measures symptoms related to 
cognitive, behavioral, affective, and somatic components of depression. 
Specific to the Byrne et al. (2004) study, only 20 of the 21 C-BDI-II items 
were used in tapping depressive symptoms for Hong Kong high school 
adolescents. Item 21, designed to assess changes in sexual interest, was 
considered to be objectionable by several school principals, and the item 
was subsequently deleted from the inventory. For each item, respondents 
are presented with four statements rated from 0 to 3 in terms of inten-
sity, and asked to select the one which most accurately describes their 
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own feelings; higher scores represent a more severe level of reported 
depression. As noted in Chapter 4, the CFA of a measuring instrument 
is most appropriately conducted with fully developed assessment mea-
sures that have demonstrated satisfactory factorial validity. Justification 
for CFA procedures in the present instance is based on evidence provided 
by Tanaka and Huba (1984), and replicated studies by Byrne and associ-
ates (Byrne & Baron, 1993, 1994; Byrne et al., 1993, 1994, 1995, 1996; Byrne, 
Baron & Balev, 1996, 1998), that BDI score data are most adequately repre-
sented by a hierarchical factorial structure. That is to say, the first-order 
factors are explained by some higher order structure which, in the case of 
the C-BDI-II and its derivatives, is a single second-order factor of general 
depression.

Let’s turn now, then, to a description of the C-BDI-II, and its postulated 
structure.

The hypothesized model
The CFA model to be tested in the present application hypothesizes a pri-
ori that (a) responses to the C-BDI-II can be explained by three first-order 
factors (Negative Attitude, Performance Difficulty, and Somatic Elements) 
and one second-order factor (General Depression); (b) each item has a 
nonzero loading on the first-order factor it was designed to measure, and 
zero loadings on the other two first-order factors; (c) error terms associ-
ated with each item are uncorrelated; and (d) covariation among the three 
first-order factors is explained fully by their regression on the second-
order factor. A diagrammatic representation of this model is presented 
in Figure 5.1.

One additional point I need to make concerning this model is that, in 
contrast to the CFA models examined in Chapters 3 and 4, the factor-load-
ing parameter fixed to a value of 1.00 for purposes of model identification 
here is not the first one of each congeneric group. Rather, these fixed val-
ues are specified for the factor loadings associated with BDI2_3 for Factor 
1, BDI2_12 for Factor 2, and BDI2_16 for Factor 3. These assignments can 
be verified in a quick perusal of Table 5.6 in which the unstandardized 
estimates are presented.

Modeling with AMOS Graphics
As suggested in previous chapters, in an initial check of the hypothesized 
model, it is always wise to determine a priori the number of degrees of 
freedom associated with the model under test in order to ascertain its 
model identification status. Pertinent to the model shown in Figure 5.1, 
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Figure 5.1 Hypothesized second-order model of factorial structure for the 
Chinese version of the Beck Depression Inventory—II.
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there are 210 pieces of information contained in the covariance matrix 
(20 [items] × 21/2) and 43 parameters to be estimated, thereby leaving 167 
degrees of freedom. As noted earlier, AMOS provides this information for 
each model tested (see Table 5.1). Included in the table also is a summary 
of the number of variables and parameters in the model.

To make sure that you fully comprehend the basis of the related num-
bers, I consider it important to detail this information as follows:

Variables (47): 20 observed and 27 unobserved
Observed variables•	  (20): 20 C-BDI-II items
Unobserved variables•	  (27): 20 error terms, 3 first-order factors, 1 
second-order factor, and 3 residual terms
Exogenous variables•	  (24): 20 error terms, 1 second-order factor, 
and 3 residual terms
Endogenous variables•	  (23): 20 observed variables and 3 first-or-
der factors

Parameters
Fixed•	

Weights −  (26): 20 error term regression paths (fixed to 1.0), 3 
factor loadings (fixed to 1.0), and 3 residual regression paths 
(fixed to 1.0)
Variances − : Second-order factor

Unlabeled•	
Weights −  (20): 20 factor loadings

Variances −  (23): 20 error variances and three residual variances

At first blush, one might feel confident that the specified model 
was overidentified and, thus, all should go well. However, as noted in 
Chapter 2, with hierarchical models, it is critical that one also check 
the identification status of the higher order portion of the model. In the 
present case, given the specification of only three first-order factors, 
the higher order structure will be just-identified unless a constraint 
is placed on at least one parameter in this upper level of the model 
(see, e.g., Bentler, 2005; Rindskopf & Rose, 1988). More specifically, with 
three first-order factors, we have six ([3 × 4] / 2) pieces of information; 
the number of estimable parameters is also six (three factor loadings; 
three residuals), thereby resulting in a just-identified model. Thus, 
prior to testing for the validity of the hypothesized structure shown in 
Figure 5.1, we need first to address this identification issue at the upper 
level of the model.

One approach to resolving the issue of just-identification in the pres-
ent second-order model is to place equality constraints on particular 
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parameters at the upper level known to yield estimates that are approxi-
mately equal. Based on past work with the BDI and BDI-II, this con-
straint is typically placed on appropriate residual terms. The AMOS 
program provides a powerful and quite unique exploratory mechanism 
for separating promising from unlikely parameter candidates for the 
imposition of equality constraints. This strategy, termed the critical 
ratio difference (CRDIFF) method, produces a listing of critical ratios 
for the pairwise differences among all parameter estimates; in our case 
here, we would seek out these values as they relate to the residuals. A 
formal explanation of the CRDIFF as presented in the AMOS Reference 
Guide is shown in Figure 5.2. This information is readily accessed by 
first clicking on the Help menu and following these five steps: Click on 
Contents, which will then produce the Search dialog box; in the blank 
space, type in critical ratio differences; click on List Topics; select Critical 

Table 5.1 Selected AMOS Output for Preliminary Model:  
Summary Statistics, Variables, and Parameters

Computation of degrees of freedom
Number of distinct sample moments 210
Number of distinct parameters to be 
estimated

43

Degrees of freedom (210 – 43) 167

Results
Minimum was achieved.
Chi-square = 385.358
Degrees of freedom = 167
Probability level = .000

Variables
Number of variables in your model: 47
Number of observed variables: 20
Number of unobserved variables: 27
Number of exogenous variables: 24
Number of endogenous variables: 23

Parameter summary

Weights Covariances Variances Means Intercepts Total

Fixed 26 0 1 0 0 27
Labeled 0 0 0 0 0 0
Unlabeled 20 0 23 0 0 43
Total 46 0 24 0 0 70
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Ratios for Diffs (as shown highlighted in Figure 5.2); and click on Display. 
These actions will then yield the explanation presented on the right side 
of the dialog box.

Now that you know how to locate which residual parameters have 
values that are approximately of the same magnitude, the next step is to 
know how to obtain these CRDIFF values in the first place. This process, 
however, is easily accomplished by requesting that critical ratios for dif-
ferences among parameters be included in the AMOS output which is 
specified on the Analysis Properties dialog box, as shown in Figure 5.3. 
All that is needed now is to calculate the estimates for this initial model 
(Figure 5.1). However, at this point, given that we have yet to finalize the 
identification issue at the upper level of the hypothesized structure, we’ll 
refer to the model as the preliminary model.

Selected AMOS output: Preliminary model

In this initial output file, only labels assigned to the residual parameters 
and the CRDIFF values are of interest. This labeling action occurs as a 
consequence of having requested the CRDIFF values and, thus, has not 

Figure 5.2 AMOS Reference Guide: Explanation of critical ratio of differences.
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Chapter five: Testing for factorial validity of second-order CFA 135

been evident on the AMOS output related to the models in Chapters 3 and 
4. Turning first to the content of Table 5.2, we note that the labels assigned 
to residuals 1, 2, and 3 are par_21, par_22, and par_23, respectively.

Let’s turn now to the critical ratio differences among parameters, 
which are shown circled in Figure 5.4. The explanatory box to the right 
of the circle was triggered by clicking the cursor on the value of –2.797, 
the CRDIFF value between resid1 and resid2 (i.e., par_21 and par_22). The 
boxed area on the left of the matrix, as usual, represents labels for the vari-
ous components of the output file; our focus has been on the “Pairwise 
Parameter Comparisons” section, which is shown highlighted. Turning 
again to the residual CRDIFF values, we can see that the two prime candi-
dates for the imposition of equality constraints are the higher order resid-
uals related to the Performance Difficulty and Somatic Elements factors, 
as their estimated values are very similar in magnitude (albeit their signs 

Figure 5.3 Analysis Properties dialog box: Requesting critical ratio of differences 
in the AMOS output.
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are different) and both are nonsignificant (<1.96). Given these findings, it 
seems reasonable to constrain variances of the residuals associated with 
Factors 2 (Performance Difficulty) and 3 (Somatic Elements) to be equal. 
As such, the higher order level of the model will be overidentified with 
one degree of freedom. That is to say, the variance will be estimated for 
resid2, and then the same value held constant for resid3. The degrees of 
freedom for the model as a whole should now increase from 167 to 168.

Now that we know which residual terms in the upper level of the 
model to constrain, we now need to include this information in the model 
to be tested. Such specification of equality constraints in AMOS is accom-
plished by assigning the same label to all parameters to be constrained 
equal. As per all processes conducted in AMOS, an elaboration of the 

Table 5.2 Selected AMOS Output for Preliminary Model:  
Error Residual Variance Parameter Labels

Estimate S.E. C.R. P Label

DEPRESSION 1.000

res1 .055 .012 4.689 *** par_21
res2 .006 .010 .620 .535 par_22
res3 .030 .008 3.555 *** par_23
err14 .274 .020 13.399 *** par_24
err10 .647 .043 15.198 *** par_25
err9 .213 .014 14.873 *** par_26
err8 .373 .026 14.491 *** par_27
err7 .313 .023 13.540 *** par_28
err6 .698 .047 15.001 *** par_29
err5 .401 .027 14.772 *** par_30
err3 .510 .035 14.655 *** par_31
err2 .255 .018 13.848 *** par_32
err1 .406 .029 13.947 *** par_33
err19 .446 .031 14.467 *** par_34
err17 .310 .022 13.923 *** par_35
err13 .277 .020 13.825 *** par_36
err12 .258 .019 13.547 *** par_37
err11 .358 .026 13.795 *** par_38
err4 .311 .022 14.442 *** par_39
err16 .440 .030 14.534 *** par_40
err15 .260 .024 10.761 *** par_41
err18 .566 .038 15.012 *** par_42
err20 .248 .020 12.274 *** par_43

*** probability < .000
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specification of equality constraints can be retrieved from the AMOS 
Reference Guide by clicking on the Help tab. The resulting information is 
shown in Figure 5.5.

Let’s return, then, to our hypothesized model and assign these equal-
ity constraints to the two factor residuals associated with the first-order 
factors. Turning to the first residual (res2), a right-click on the outside 
perimeter of the circle will open the Tools menu, after which we click 
on the Object Properties tab and, once in that dialog box, click on the Text 
tab, where you should see the variable name res2 already entered. In the 
empty space below marked Variable Label, we insert var_a. A representa-
tion of this completed box is illustrated in Figure 5.6. This process is then 
repeated for the residual term associated with Factor 3 (res3). The fully 
labeled hypothesized model showing the constraint between these two 
residual terms is schematically presented in Figure 5.7. Analyses are now 
based on this respecified model.

Selected AMOS output: The hypothesized model

Presented in Table 5.3 is a summary of both statistics and specified 
parameters related to the changes made to the original model of C-BDI-II 

Figure 5.4 Location of critical ratio of differences values and parameter labels.
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Figure 5.5 AMOS Reference Guide: Explanation of how to impose equality 
constraints.

Figure 5.6 Object Properties dialog box: Creating a variable label.
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Depression

1

1
var_a

var_a

var_a

BDI2_1

BDI2_2

BDI2_3

1

1

1

err1

err2

err3

BDI2_6

BDI2_7

BDI2_8

BDI2_5err5
1

1

1

1

1

1

err6

err7

err8

BDI2_10

BDI2_14

BDI2_9err9
1

1

1

err10

err14

res1

F1
Negative
Attitude

BDI2_41err4

BDI2_12

BDI2_13

BDI2_17

BDI2_11err11
1

1

1

1

err12

err13

err17

BDI2_19err19
1

1

F2
Performance

Difficulty

BDI2_16

BDI2_18

BDI2_20

BDI2_15err15
1

1
1

1

1

1

err16

err18

err20

res3

F3
Somatic
Elements

Figure 5.7 Hypothesized second-order model with residual variances for Factors 
2 and 3 constrained equal.
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structure. As a consequence of the equality constraint imposed on the 
model, there are now two important differences from the preliminary 
model specification. First, as noted earlier, there are now 168, rather than 
167, degrees of freedom. Second, there are now two labeled parameters 
(the var_a assigned to res2 and res3).

Model evaluation

Goodness-of-fit summary
In reviewing the goodness-of-fit statistics in Table 5.4, we can see that the 
hypothesized model fits the data very well as evidenced by the CFI of 
.936 and RMSEA of .052. As a consequence, we examine the modification 
indices purely in the interest of completeness. These values are presented 
in Table 5.5.

In reviewing the MIs related to the covariances, you will note two val-
ues that are substantially larger than the rest of the estimates. These relate 
to covariation between the error terms associated with Items 17 and 11, 
and with Items 9 and 10. However, as indicated by the reported parameter 
change statistics, incorporation of these two parameters into the model 
would result in parameter values of .083 and .080, respectively—clearly 
trivial estimates. Turning to the MIs related to regression weights, we see 

Table 5.3 Selected AMOS Output for Hypothesized Model:  
Summary Statistics and Parameters

Computation of degrees of freedom

Number of distinct sample moments 210
Number of distinct parameters to be estimated 42
Degrees of freedom (210 – 42) 168

Results
Minimum was achieved.
Chi-square = 388.427
Degrees of freedom = 168
Probability level = .000

Parameter summary

Weights Covariances Variances Means Intercepts Total

Fixed 26 0 1 0 0 27
Labeled 0 0 2 0 0 2
Unlabeled 20 0 21 0 0 41
Total 46 0 24 0 0 70
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that they make no sense at all as they suggest the impact of one item load-
ing on another. In light of the very good fit of the model, together with the 
trivial nature of the MIs, we can conclude that the second-order model 
shown in Figure 5.7 is the most optimal representing C-BDI-II structure 
for Hong Kong adolescents.

Model maximum likelihood (ML) estimates
As can be seen in Table 5.6, all estimates were found to have critical ratio 
values >1.96, thereby indicating their statistical significance. For clarifi-
cation regarding terminology associated with the AMOS output, recall 
that the factor loadings are listed as Regression Weights. Listed first are 
the second-order factor loadings, followed by the first-order loadings. 
Note also that all parameters in the model have been assigned a label, 
which of course is due to our request for the calculation and reporting 
of CRDIFF values. Turning to the variance estimates, note that all values 
related to res2 and res3 (encircled) carry exactly the same values, which 
of course they should. Finally, the related standardized estimates are 
presented in Table 5.7.

In concluding this section of the chapter, I wish to note that, given 
the same number of estimable parameters, fit statistics related to a model 
parameterized either as a first-order structure or as a second-order structure 
will basically be equivalent. The difference between the two specifications 

Table 5.4 Selected AMOS Output for Hypothesized Model:  
Goodness-of-Fit Statistics

CMIN
Model NPAR CMIN DF P CMIN/DF

Your model 42 388.427 168 .000 2.312
Saturated model 210 .000 0
Independence model 20 3649.228 190 .000 19.206

Baseline comparisons

Model
NFI 

Delta1
RFI 
rho1

IFI 
Delta2

TLI 
rho2 CFI

Your model .894 .880 .937 .928 .936
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE
Your model .052 .045 .059 .304
Independence model .194 .188 .199 .000
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Table 5.5 Selected AMOS Output for 
Hypothesized Model: Modification Indices

M.I. Par change

Covariances
err11 <--> err4 9.632 –.051
err12 <--> err4 12.933 .051
err13 <--> err20 6.001 –.033
err17 <--> err18 6.694 .052
err17 <--> err11 24.812 .083
err17 <--> err12 9.399 –.044
err19 <--> res3 7.664 .025
err1 <--> err11 9.185 .058
err1 <--> err12 10.690 .054
err2 <--> err18 7.611 –.051
err2 <--> err4 7.337 .038
err3 <--> err12 7.787 –.050
err5 <--> res2 8.629 .031
err6 <--> res3 8.652 –.033
err6 <--> err15 8.570 –.066
err6 <--> err13 12.165 .075
err7 <--> err15 12.816 –.056
err9 <--> res2 7.800 –.021
err9 <--> err18 9.981 .052
err9 <--> err13 8.432 –.034
err10 <--> err16 6.194 .063
err10 <--> err8 11.107 –.077
err10 <--> err9 21.479 .080
err14 <--> err6 8.124 –.061
err14 <--> err7 9.280 .046

Regression weights
BDI2_18 <--- BDI2_9 6.845 .167

BDI2_15 <--- BDI2_6 7.984 –.078
BDI2_15 <--- BDI2_7 7.754 –.091
BDI2_11 <--- BDI2_17 12.315 .134
BDI2_12 <--- BDI2_4 6.885 .092
BDI2_12 <--- BDI2_1 7.287 .076
BDI2_13 <--- BDI2_6 9.257 .080
BDI2_17 <--- BDI2_11 11.843 .111
BDI2_1 <--- BDI2_11 7.196 .099

(Continued)
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is that the second-order model is a special case of the first-order model, 
with the added restriction that structure be imposed on the correlational 
pattern among the first-order factors (Rindskopf & Rose, 1988). However, 
judgment as to whether or not a measuring instrument should be modeled 
as a first-order or as a second-order structure ultimately rests on substan-
tive meaningfulness as dictated by the underlying theory.

Estimation of continuous versus 
categorical variables
Thus far in this book, analyses have been based on ML estimation. An 
important assumption underlying this estimation procedure is that the 
scale of the observed variables is continuous. In Chapters 3 and 4, as 
well as the present chapter, however, the observed variables were Likert-
scaled items that realistically represent categorical data of an ordinal 
scale, albeit they have been treated as if they were continuous. Indeed, 
such practice has been the norm for many years now and applies to tra-
ditional statistical techniques (e.g., ANOVA; MANOVA) as well as SEM 
analyses. Paralleling this widespread practice of treating ordinal data 
as if they are continuous, however, has been an ongoing debate in the 
literature concerning the pros and cons of this practice. Given (a) the 
prevalence of this practice in the SEM field, (b) the importance of acquir-
ing an understanding of the issues involved, and (c) my intent in this 
chapter to illustrate analysis of data that can address categorically coded 

Table 5.5 Selected AMOS Output for 
Hypothesized Model: Modification  

Indices (Continued)

M.I. Par change

Regression weights
BDI2_1 <--- BDI2_12 7.682 .117
BDI2_2 <--- BDI2_18 6.543 –.075
BDI2_6 <--- BDI2_13 6.349 .135
BDI2_7 <--- BDI2_15 6.309 –.085
BDI2_8 <--- BDI2_10 9.040 –.097
BDI2_9 <--- BDI2_18 7.198 .070
BDI2_9 <--- BDI2_13 6.935 –.078
BDI2_9 <--- BDI2_10 17.471 .101
BDI2_10 <--- BDI2_16 6.739 .126
BDI2_10 <--- BDI2_8 6.568 –.123
BDI2_10 <--- BDI2_9 14.907 .263
BDI2_14 <--- BDI2_6 6.043 –.065
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variables, I consider it important to address these issues before reanalyz-
ing the hypothesized model of C-BDI-II structure shown in Figure 5.7 
via a different estimation approach. First, I present a brief review of the 
literature that addresses the issues confronted in analyzing categorical 
variables as continuous variables. Next, I briefly outline the theoretical 
underpinning of, the assumptions associated with, and primary esti-
mation approaches to the analysis of categorical variables when such 
ordinality is taken into account. Finally, I outline the very different 
approach to these analyses by the AMOS program and proceed to walk 
you through a reanalysis of the hypothesized model previously tested 
in this chapter.

Table 5.7 Selected AMOS Output for Hypothesized Model:  
Standardized ML Parameter Estimates

Standardized regression weights Estimate

PERFORMANCE_DIFFICULTY <--- DEPRESSION .960
NEGATIVE_ATTITUDE <--- DEPRESSION .894
SOMATIC_ELEMENTS <--- DEPRESSION .921
BDI2_14 <--- NEGATIVE_ATTITUDE .736
BDI2_10 <--- NEGATIVE_ATTITUDE .412
BDI2_9 <--- NEGATIVE_ATTITUDE .527
BDI2_8 <--- NEGATIVE_ATTITUDE .609
BDI2_7 <--- NEGATIVE_ATTITUDE .723
BDI2_6 <--- NEGATIVE_ATTITUDE .485
BDI2_5 <--- NEGATIVE_ATTITUDE .549
BDI2_3 <--- NEGATIVE_ATTITUDE .577
BDI2_2 <--- NEGATIVE_ATTITUDE .695
BDI2_1 <--- NEGATIVE_ATTITUDE .683
BDI2_19 <--- PERFORMANCE_DIFFICULTY .600
BDI2_17 <--- PERFORMANCE_DIFFICULTY .676
BDI2_13 <--- PERFORMANCE_DIFFICULTY .685
BDI2_12 <--- PERFORMANCE_DIFFICULTY .714
BDI2_11 <--- PERFORMANCE_DIFFICULTY .688
BDI2_4 <--- PERFORMANCE_DIFFICULTY .605
BDI2_16 <--- SOMATIC_ELEMENTS .487
BDI2_15 <--- SOMATIC_ELEMENTS .765
BDI2_18 <--- SOMATIC_ELEMENTS .397
BDI2_20 <--- SOMATIC_ELEMENTS .714
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Categorical variables analyzed as continuous variables

A review of SEM applications over the past 15 years (in the case of psy-
chological research, at least) reveals most to be based on Likert-type 
scaled data with estimation of parameters using ML procedures (see, e.g., 
Breckler, 1990). Given the known limitations associated with available 
alternative estimation strategies (to be described below), however, this 
common finding is not surprising. We now review, briefly, the primary 
issues associated with this customary practice.

The issues

From a review of Monte Carlo studies that have addressed this issue of ana-
lyzing categorical data as continuous data (see, e.g., Babakus, Ferguson, & 
Jöreskog, 1987; Boomsma, 1982; Muthén & Kaplan, 1985), West, Finch, and 
Curran (1995) reported several important findings. First, Pearson correla-
tion coefficients would appear to be higher when computed between two 
continuous variables than when computed between the same two vari-
ables restructured with an ordered categorical scale. However, the great-
est attenuation occurs with variables having less than five categories and 
those exhibiting a high degree of skewness, the latter condition being made 
worse by variables that are skewed in opposite directions (i.e., one variable 
is positively skewed, and the other negatively skewed; see Bollen & Barb, 
1981). Second, when categorical variables approximate a normal distribution, 
(a) the number of categories has little effect on the χ2 likelihood ratio test of 
model fit, but increasing skewness, and particularly differential skewness 
(variables skewed in opposite directions), leads to increasingly inflated χ2 
values; (b) factor loadings and factor correlations are only modestly under-
estimated, although underestimation becomes more critical when there are 
fewer than three categories, skewness is greater than 1.0, and differential 
skewness occurs across variables; (c) error variance estimates, more so than 
other parameters, appear to be most sensitive to the categorical and skewness 
issues noted in (b); and (d) standard error estimates for all parameters tend to 
be too low, with this result being more so when the distributions are highly 
and differentially skewed (see also Finch, West, & MacKinnon, 1997).

In summary, the literature to date would appear to support the notion 
that when the number of categories is large and the data approximate a 
normal distribution, failure to address the ordinality of the data is likely 
negligible (Atkinson, 1988; Babakus et al., 1987; Muthén & Kaplan, 1985). 
Indeed, Bentler and Chou (1987) argued that, given normally distributed 
categorical variables, “continuous methods can be used with little worry 
when a variable has four or more categories” (p. 88). More recent find-
ings support these earlier contentions and have further shown that the 
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χ2 statistic is influenced most by the two-category response format and 
becomes less influenced as the number of categories increases (Green, 
Akey, Fleming, Hershberger, & Marquis, 1997).

Categorical variables analyzed as categorical variables

The theory
In addressing the categorical nature of observed variables, the researcher 
automatically assumes that each has an underlying continuous scale. As 
such, the categories can be regarded as only crude measurements of an 
unobserved variable that, in truth, has a continuous scale (Jöreskog & 
Sörbom, 1993), with each pair of thresholds (or initial scale points) represent-
ing a portion of the continuous scale. The crudeness of these measurements 
arises from the splitting of the continuous scale of the construct into a fixed 
number of ordered categories (DiStefano, 2002). Indeed, this categorization 
process led O’Brien (1985) to argue that the analysis of Likert-scaled data 
actually contributes to two types of error: (a) categorization error resulting 
from the splitting of the continuous scale into a categorical scale, and (b) 
transformation error resulting from categories of unequal widths.

For purposes of illustration, let’s consider the measuring instrument 
under study in this current chapter, in which each item is structured 
on a four-point scale. I draw from the work of Jöreskog and Sörbom 
(1993) in describing the decomposition of these categorical variables. 
Let z represent the ordinal variable (the item), and z* the unobserved 
continuous variable. The threshold values can then be conceptualized 
as follows:

 If z* < or = τ1, z is scored 1;

 If τ1 < z* < or = τ2, z is scored 2;

 If τ2 < z* < or = τ3, z is scored 3; and

 If τ3 < z*, z is scored 4;

where τ1 < τ2 < τ3 represents threshold values for z*.
In conducting SEM with categorical data, analyses must be based on 

the correct correlation matrix. Where the correlated variables are both of 
an ordinal scale, the resulting matrix will comprise polychoric correla-
tions; where one variable is of an ordinal scale, while the other is of a 
continuous scale, the resulting matrix will comprise polyserial correla-
tions. If two variables are dichotomous, this special case of a polychoric 
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correlation is called a tetrachoric correlation. If a polyserial correlation 
involves a dichotomous, rather than a more general, ordinal variable, the 
polyserial correlation is also called a biserial correlation.

The assumptions
Applications involving the use of categorical data are based on three criti-
cally important assumptions: (a) Underlying each categorical observed 
variable is an unobserved latent counterpart, the scale of which is both 
continuous and normally distributed; (b) the sample size is sufficiently 
large to enable reliable estimation of the related correlation matrix; and (c) 
the number of observed variables is kept to a minimum. As Bentler (2005) 
cogently noted, however, it is this very set of assumptions that essentially 
epitomizes the primary weakness in this methodology. Let’s now take a 
brief look at why this should be so.

That each categorical variable has an underlying continuous and nor-
mally distributed scale is undoubtedly a difficult criterion to meet and, 
in fact, may be totally unrealistic. For example, in the present chapter, 
we examine scores tapping aspects of depression for nonclinical adoles-
cents. Clearly, we would expect such item scores for normal adolescents 
to be low, thereby reflecting no incidence of depressive symptoms. As a 
consequence, we can expect to find evidence of kurtosis, and possibly 
skewness, related to these variables, with this pattern being reflected in 
their presumed underlying continuous distribution. Consequently, in the 
event that the model under test is deemed to be less than adequate, it may 
well be that the normality assumption is unreasonable in this instance.

The rationale underlying the latter two assumptions stems from the 
fact that, in working with categorical variables, analyses must proceed 
from a frequency table comprising number of thresholds × number of 
observed variables, to an estimation of the correlation matrix. The prob-
lem here lies with the occurrence of cells having zero or near-zero cases, 
which can subsequently lead to estimation difficulties (Bentler, 2005). This 
problem can arise because (a) the sample size is small relative to the num-
ber of response categories (i.e., specific category scores across all categori-
cal variables), (b) the number of variables is excessively large, and/or (c) 
the number of thresholds is large. Taken in combination, then, the larger 
the number of observed variables and/or number of thresholds for these 
variables, and the smaller the sample size, the greater the chance of hav-
ing cells comprising zero to near-zero cases.

General analytic strategies
Until recently, two primary approaches to the analysis of categorical 
data (Jöreskog, 1990, 1994; Muthén, 1984) have dominated this area of 
research. Both methodologies use standard estimates of polychoric and 
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polyserial correlations, followed by a type of asymptotic distribution-free 
(ADF) methodology for the structured model. Unfortunately, the positive 
aspects of these categorical variable methodologies have been offset by 
the ultra-restrictive assumptions noted above and which, for most practi-
cal researchers, are both impractical and difficult to meet. In particular, 
conducting ADF estimation here has the same problem of requiring huge 
sample sizes, as in Browne’s (1984a) ADF method for continuous variables. 
Attempts to resolve these difficulties over the past few years have resulted 
in the development of several different approaches to modeling categori-
cal data (see, e.g., Bentler, 2005; Coenders, Satorra, & Saris, 1997; Moustaki, 
2001; Muthén & Muthén, 2004).

The AMOS approach to analysis 
of categorical variables
The methodological approach to analysis of categorical variables in 
AMOS differs substantially from that of the other SEM programs. In lieu 
of ML or ADF estimation, AMOS analyses are based on Bayesian esti-
mation. Bayesian inference dates back as far as the 18th century, yet its 
application in social-psychological research has been rare. Although this 
statistical approach is still not widely practiced, there nevertheless has 
been some resurgence of interest in its application over the past few years. 
In light of this information, you no doubt will wonder why I am includ-
ing a section on this methodology in the book. I do so for three primary 
reasons. First, I consider it important to keep my readers informed of this 
updated estimation approach when categorical variables are involved, 
which was not available in the program at my writing of the first edition 
of this book. Second, it enables me to walk you through the process of 
using this estimation method to analyze data with which you are already 
familiar. Finally, it allows the opportunity to compare estimated values 
derived from both the ML and Bayesian approaches to analyses of the 
same CFA model. I begin with a brief explanation of Bayesian estimation 
and then follow with a step-by-step walk through each component of the 
procedure. As with our first application in this chapter, we seek to test for 
the factorial validity of hypothesized C-BDI-II structure (see Figure 5.7) 
for Hong Kong adolescents.

What is Bayesian estimation?

In ML estimation and hypothesis testing, the true values of the model 
parameters are considered to be fixed but unknown, whereas their estimates 
(from a given sample) are considered to be random but known (Arbuckle, 
2007). In contrast, Bayesian estimation considers any unknown quantity as 
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a random variable and therefore assigns it a probability distribution. Thus, 
from the Bayesian perspective, true model parameters are unknown and 
therefore considered to be random. Within this context, then, these param-
eters are assigned a joint distribution—a prior distribution (probability 
distribution of the parameters before they are actually observed, also com-
monly termed the priors; Vogt, 1993), and a posterior distribution (probability 
distribution of parameters after they have been observed and combined 
with the prior distribution). This updated joint distribution is based on the 
formula known as Bayes’ theorem and reflects a combination of prior belief 
(about the parameter estimates) and empirical evidence (Arbuckle, 2007; 
Bolstad, 2004). Two characteristics of this joint distribution are important to 
CFA analyses. First, the mean of this posterior distribution can be reported 
as the parameter estimate. Second, the standard deviation of the posterior 
distribution serves as an analog to the standard error in ML estimation.

Application of Bayesian estimation

Because Bayesian analyses require the estimation of all observed vari-
able means and intercepts, the first step in the process is to request this 
information via the Analysis Properties dialog box as shown in Figure 5.8. 
Otherwise, in requesting that the analyses be based on this approach, you 
will receive an error message advising you of this fact.

Once you have the appropriately specified model (i.e., the means and 
intercepts are specified as freely estimated), to begin the Bayesian analy-
ses, click on the  icon in the toolbox. Alternatively, you can pull down 

Figure 5.8 Analysis Properties dialog box: Requesting estimation of means and 
intercepts.
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the Analyze menu and select Bayesian Estimation. Once you do this, you will 
be presented with the Bayesian SEM window shown partially in Figure 5.9, 
and fully in Figure 5.10. You will note also that the numbers in each of the 
columns are constantly changing. The reason for these ongoing number 
changes is because as soon as you request Bayesian estimation, the pro-
gram immediately initiates the steady drawing of random samples based 
on the joint posterior distribution. This random sampling process is accom-
plished in AMOS via an algorithm termed the Markov chain Monte Carlo 
(MCMC) algorithm. The basic idea underlying this ever-changing number 
process is to identify, as closely as possible, the true value of each param-
eter in the model. This process will continue until you halt the process by 
clicking on the Pause button, shown within a square frame at the immedi-
ate left of the second line of the Toolbox in Figures 5.9 and 5.10.

Now, let’s take a closer look at the numbers appearing in the upper 
section (the Toolbox) of the Bayesian SEM window. In Figure 5.9, note the 
numbers beside the Pause button, which read as 500 + 65.501 and indi-
cate the point at which sampling was halted. This information conveys 
that AMOS generated and discarded 500 burn-in samples (the default 
value) prior to drawing the first one that was retained for the analysis. 
The reason for these burn-in samples is to allow the MCMC procedure 
to converge to the true joint posterior distribution (Arbuckle, 2007). After 
drawing and discarding the burn-in samples, the program then draws 
additional samples, the purpose of which is to provide the most precise 
picture of the values comprising the posterior distribution.

Clearly, a next logical question one might ask about this sampling pro-
cess is how one knows when enough samples have been drawn to yield a 
posterior distribution that is sufficiently accurate. This question addresses 
the issue of convergence and the point at which enough samples have been 

Figure 5.9 Bayesian SEM window: Posterior distribution sampling and conver-
gence status.
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drawn so as to generate stable parameter estimates. AMOS establishes this 
cutpoint on the basis of the convergence statistic (C.S.), which derives from 
the work of Gelman, Carlin, Stern, and Rubin (2004). By default, AMOS 
considers the sampling to have converged when the largest of the C.S. val-
ues is less than 1.002 (Arbuckle, 2007). Until this default C.S. value has been 
reached, AMOS displays an unhappy face (). Turning again to Figure 5.9, 
I draw your attention to the circled information in the Toolbar section of 
the window. Here you will note the “unhappy face” emoticon accompa-
nied by the value of 1.0025, indicating that the sampling process has not 
yet attained the default cutpoint of 1.002; rather, it is ever so slightly higher 
than that value. Unfortunately, because this emoticon is colored red in the 
Bayesian toolbar, it is impossible to reproduce it in a lighter shade.

In contrast, turn now to Figure 5.10, in which you will find a happy 
face () together with the C.S. value of 1.0017, thereby indicating conver-
gence (in accordance with the AMOS default value). Moving down to the 

Figure 5.10 Bayesian SEM window: Posterior distribution sampling and 
convergence status, and related estimates and statistics.

RT63727.indb   154 7/6/09   7:26:12 PM



Chapter five: Testing for factorial validity of second-order CFA 155

row that begins with the Pause icon, we see the numbers 500 + 59.501. This 
 information conveys the notion that following the sampling and discarding 
of 500 burn-in samples, the MCMC algorithm has generated 59 additional 
samples and, as noted above, reached a convergent C.S. value of 1.0017.

Listed below the toolbar area are the resulting statistics pertinent to 
the model parameters; only the regression weights (i.e., factor loadings) 
are presented here. Each row in this section describes the posterior dis-
tribution value of a single parameter, while each column lists the related 
statistic. For example, in the first column (labeled Mean), each entry repre-
sents the average value of the posterior distribution and, as noted earlier, 
can be interpreted as the final parameter estimate. More specifically, these 
values represent the Bayesian point estimates of the parameters based on 
the data and the prior distribution. Arbuckle (2007) noted that with large 
sample sizes, these mean values will be close to the ML estimates. (We 
make this comparison later in the chapter.)

The second column, labeled S.E., reports an estimated standard error 
that implies how far the estimated posterior mean may lie from the true 
posterior mean. As the MCMC procedures continue to generate more 
samples, the estimate of the posterior mean becomes more accurate and 
the S.E. will gradually drop. Certainly, in Figure 5.10, we can see that the 
S.E. values are very small thereby indicating that they are very close to the 
true values. The next column, labeled S.D., can be interpreted as the likely 
distance between the posterior mean and the unknown true parameter; 
this number is analogous to the standard error in ML estimation. The 
remaining columns, as can be observed in Figure 5.10, represent the poste-
rior distribution values related to the C.S., skewness, kurtosis, minimum 
value, and maximum value, respectively.

In addition to the C.S. value, AMOS makes several diagnostic plots 
available for you to check the convergence of the MCMC sampling 
method. To generate these plots, you need to click on the Posterior icon 
located on the Bayesian SEM Toolbox area, as shown encased in an ellipse 
in Figure 5.11. Just clicking this icon will trigger the dialog box shown 
in Figure 5.12. The essence of this message is that you must select one of 
the estimated parameters in the model. As can be seen in Figure 5.13, I 
selected the first model parameter (highlighted), the loading of C-BDI-II 
Item 14 onto Negative Attitude (Factor 1). Right-clicking the mouse gener-
ated the Posterior Diagnostic dialog box with the distribution shown within 
the framework of a polygon plot. Specifically, this frequency polygon dis-
plays the sampling distribution of Item 14 across 59 samples (the number 
sampled after the 500 burn-in samples were deleted).

AMOS produces an additional polygon plot that enables you to deter-
mine the likelihood that the MCMC samples have converged to the poste-
rior distribution via a simultaneous distribution based on the first and last 
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Figure 5.11 Bayesian SEM window: Location of posterior icon.

Figure 5.12 Bayesian SEM error message.

Figure 5.13 Bayesian SEM diagnostic polygon plot.
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thirds of the accumulated samples. This polygon is accessed by selecting 
First and Last, as can be seen in Figure 5.14. From the display in this plot, 
we observe that the two distributions are almost identical, thereby sug-
gesting that AMOS has successfully identified important features of the 
posterior distribution of Item 14. Notice that this posterior distribution 
appears to be centered at some value near 1.17, which is consistent with the 
mean value of 1.167 noted in Figure 5.10.

Two other available diagnostic plots are the histogram and trace plots 
illustrated in Figures 5.15 and 5.16, respectively. While the histogram is rela-
tively self-explanatory, the trace plot requires some explanation. Sometimes 
termed the time-series plot, this diagnostic plot helps you to evaluate how 
quickly the MCMC sampling procedure converged in the posterior distri-
bution. The plot shown in Figure 5.16 is considered to be very good as it 
exhibits rapid up-and-down variation with no long-term trends. Another 
way of looking at this plot is to imagine breaking up the distribution into 
sections. Results would show none of the sections to deviate much from the 
rest. This finding indicates that the convergence in distribution occurred 
rapidly, a clear indicator that the SEM model was specified correctly.

As one final analysis of the C-BDI-II, let’s compare the unstandardized 
factor-loading estimates for the ML method versus the Bayesian posterior 
distribution estimates. A listing of both sets of estimates is  presented in 

Figure 5.14 Bayesian SEM diagnostic first and last combined polygon plot.
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Figure 5.15 Bayesian SEM diagnostic histogram plot.

Figure 5.16 Bayesian SEM diagnostic trace plot.
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Table 5.8 Comparison of Factor Loading (i.e., Regression Weight) 
Unstandardized Parameter Estimates: Maximum  

Likelihood Versus Bayesian Estimation

Parameter

Estimation 
approach

ML Bayesian

BDI2_14 <--- NEGATIVE_ATTITUDE 1.125 1.167
BDI2_10 <--- NEGATIVE_ATTITUDE .720 .740
BDI2_9 <--- NEGATIVE_ATTITUDE .566 .586
BDI2_8 <--- NEGATIVE_ATTITUDE .928 .959
BDI2_7 <--- NEGATIVE_ATTITUDE 1.161 1.197
BDI2_6 <--- NEGATIVE_ATTITUDE .919 .951
BDI2_5 <--- NEGATIVE_ATTITUDE .825 .852
BDI2_3 <--- NEGATIVE_ATTITUDE 1.000 1.000
BDI2_2 <--- NEGATIVE_ATTITUDE .966 .998
BDI2_1 <--- NEGATIVE_ATTITUDE 1.183 1.226
BDI2_19 <--- PERFORMANCE_

DIFFICULTY
.969 .979

BDI2_17 <--- PERFORMANCE_
DIFFICULTY

.984 1.001

BDI2_13 <--- PERFORMANCE_
DIFFICULTY

.955 .965

BDI2_12 <--- PERFORMANCE_
DIFFICULTY

1.000 1.000

BDI2_11 <--- PERFORMANCE_
DIFFICULTY

1.096 1.111

BDI2_4 <--- PERFORMANCE_
DIFFICULTY

.819 .828

BDI2_16 <--- SOMATIC_ELEMENTS 1.000 1.000
BDI2_15 <--- SOMATIC_ELEMENTS 1.651 1.696
BDI2_18 <--- SOMATIC_ELEMENTS .876 .907
BDI2_20 <--- SOMATIC_ELEMENTS 1.367 1.408
PERFORMANCE_DIFFICULTY<--- DEPRESSION .495 .494
NEGATIVE_ATTITUDE <--- DEPRESSION .451 .441
SOMATIC_ELEMENTS <--- DEPRESSION .342 .342

Table 5.8. As might be expected, based on our review of the  diagnostic 
plots, these estimates are very close pertinent to both the first- and second-
factor loadings. These findings speak well for the validity of our hypoth-
esized structure of the C-BDI-II for Hong Kong adolescents.
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In closing out this chapter, I wish to underscore the importance of 
our comparative analysis of C-BDI-II factorial structure from two per-
spectives: ML and Bayesian estimation. Given that items comprising this 
instrument are based on a four-point scale, the argument could be made 
that analyses should be based on a methodology that takes this ordinality 
into account. As noted earlier in this chapter, historically, these analyses 
have been based on the ML methodology, which assumes the data are of a 
continuous scale. Importantly, however, I also reviewed the literature with 
respect to (a) why researchers have tended to treat categorical variables as 
if they were continuous in SEM analyses, (b) the consequence of treating 
categorical variables as if they are of a continuous scale, and (c) identified 
scaling and other statistical features of the data that make it critical to take 
the ordinality of categorical variables into account as well as conditions 
that show this approach not to make much difference. At the very least, 
the researcher always has the freedom to conduct analyses based on both 
methodological approaches and then follow up with a comparison of the 
parameter estimates. In most cases, where the hypothesized model is well 
specified and the scaling based on more than three categories, it seems 
unlikely that there will be much difference between the findings.

One final comment regarding analysis of categorical data in AMOS 
relates to its alphanumeric capabilities. Although our analyses in this 
chapter were based on numerically scored data, the program can just as 
easily analyze categorical data based on a letter code. For details regard-
ing this approach to SEM analyses of categorical data, as well as many 
more details related to the Bayesian statistical capabilities of AMOS, read-
ers are referred to the manual (Arbuckle, 2007).
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sixchapter 

Testing for the validity 
of a causal structure
In this chapter, we take our first look at a full structural equation model 
(SEM). The hypothesis to be tested relates to the pattern of causal struc-
ture linking several stressor variables that bear on the construct of burn-
out. The original study from which this application is taken (Byrne, 1994a) 
tested and cross-validated the impact of organizational and personality 
variables on three dimensions of burnout for elementary, intermediate, 
and secondary teachers. For purposes of illustration here, however, the 
application is limited to the calibration sample of elementary teachers 
only (N = 599).

As was the case with the factor analytic applications illustrated in 
Chapters 3 through 5, those structured as full SEMs are presumed to be of 
a confirmatory nature. That is to say, postulated causal relations among all 
variables in the hypothesized model must be grounded in theory and/or 
empirical research. Typically, the hypothesis to be tested argues for the 
validity of specified causal linkages among the variables of interest. Let’s 
turn now to an in-depth examination of the hypothesized model under 
study in the current chapter.

The hypothesized model
Formulation of the hypothesized model shown in Figure 6.1 derived from 
the consensus of findings from a review of the burnout literature as it 
bears on the teaching profession. (Readers wishing a more detailed sum-
mary of this research are referred to Byrne, 1994a, 1999). In reviewing this 
model, you will note that burnout is represented as a multidimensional 
construct with Emotional Exhaustion (EE), Depersonalization (DP), and 
Personal Accomplishment (PA) operating as conceptually distinct factors. 
This part of the model is based on the work of Leiter (1991) in conceptu-
alizing burnout as a cognitive-emotional reaction to chronic stress. The 
paradigm argues that EE holds the central position because it is consid-
ered to be the most responsive of the three facets to various stressors in 
the teacher’s work environment. Depersonalization and reduced PA, on 
the other hand, represent the cognitive aspects of burnout in that they 
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are indicative of the extent to which teachers’ perceptions of their stu-
dents, their colleagues, and themselves become diminished. As indicated 
by the signs associated with each path in the model, EE is hypothesized 
to impact positively on DP, but negatively on PA; DP is hypothesized to 
impact negatively on PA.

The paths (and their associated signs) leading from the organizational 
(role ambiguity, role conflict, work overload, classroom climate, decision 
making, superior support, peer support) and personality (self-esteem, 
external locus of control) variables to the three dimensions of burnout 
reflect findings in the literature.1 For example, high levels of role conflict 
are expected to cause high levels of emotional exhaustion; in contrast, 
high (i.e., good) levels of classroom climate are expected to generate low 
levels of emotional exhaustion.

Modeling with AMOS Graphics
In viewing the model shown in Figure 6.1, we can see that it represents 
only the structural portion of the full SEM. Thus, before being able to 
test this model, we need to know the manner by which each of the con-
structs in this model is to be measured. In other words, we now need to 
specify the measurement portion of the model (see Chapter 1). In contrast 
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Figure 6.1 Hypothesized model of causal structure related to teacher burnout.
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to the CFA models studied previously, the task involved in developing the 
 measurement model of a full SEM is twofold: (a) to determine the number 
of indicators to use in measuring each construct, and (b) to identify which 
items to use in formulating each indicator.

Formulation of indicator variables

In the applications examined in Chapters 3 through 5, the formulation of 
measurement indicators has been relatively straightforward; all examples 
have involved CFA models and, as such, comprised only measurement 
models. In the measurement of multidimensional facets of self-concept 
(see Chapter 3), each indicator represented a subscale score (i.e., the sum of 
all items designed to measure a particular self-concept facet). In Chapters 
4 and 5, our interest focused on the factorial validity of a measuring 
instrument. As such, we were concerned with the extent to which items 
loaded onto their targeted factor. Adequate assessment of this specifica-
tion demanded that each item be included in the model. Thus, the indica-
tor variables in these cases each represented one item in the measuring 
instrument under study.

In contrast to these previous examples, formulation of the indicator 
variables in the present application is slightly more complex. Specifically, 
multiple indicators of each construct were formulated through the judi-
cious combination of particular items to comprise item parcels. As such, 
items were carefully grouped according to content in order to equalize 
the measurement weighting across the set of indicators measuring the 
same construct (Hagtvet & Nasser, 2004). For example, the Classroom 
Environment Scale (Bacharach, Bauer, & Conley, 1986), used to measure 
Classroom Climate, consists of items that tap classroom size, ability and 
interest of students, and various types of abuse by students. Indicators of 
this construct were formed such that each item in the composite measured 
a different aspect of classroom climate. In the measurement of classroom 
climate, self-esteem, and external locus of control, indicator variables 
consisted of items from a single unidimensional scale; all other indica-
tors comprised items from subscales of multidimensional scales. (For an 
extensive description of the measuring instruments, see Byrne, 1994a.) In 
total, 32 item–parcel indicator variables were used to measure the hypoth-
esized structural model.

Since the current study was conducted, there has been a grow-
ing interest in the question of item parceling. Research has focused on 
such issues as method of parceling (Bandalos & Finney, 2001; Hagtvet 
& Nasser, 2004; Kim & Hagtvet, 2003; Kishton & Widaman, 1994; Little, 
Cunningham, Shahar, & Widaman, 2002; Rogers & Schmitt, 2004), num-
ber of items to include in a parcel (Marsh, Hau, Balla, & Grayson, 1998), 
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extent to which item parcels affect model fit (Bandalos, 2002), and, more 
generally, whether or not researchers should even engage in item parcel-
ing at all (Little et al., 2002; Little, Lindenberger, & Nesselroade, 1999). 
Little et al. (2002) presented an excellent summary of the pros and cons of 
using item parceling, and the Bandalos and Finney (2001) chapter, a thor-
ough review of the issues related to item parceling. (For details related 
to each of these aspects of item parceling, readers are advised to consult 
these references directly.)

A schematic presentation of the full SEM is presented in Figure 6.2. 
It is important to note that, in the interest of clarity, all double-headed 
arrows representing correlations among the independent (i.e., exogenous) 
factors, as well as error terms associated with the observed (i.e., indicator) 
variables, have been excluded from the figure. However, given that AMOS 
Graphics operates on the WYSIWYG (what you see is what you get) prin-
ciple, these parameters must be included in the model before the program 
will perform the analyses. I revisit this issue after we fully establish the 
hypothesized model under test in this chapter.

The preliminary model (because we have not yet tested for the 
validity of the measurement model) in Figure 6.2 is most appropriately 
presented within the framework of the landscape layout. In AMOS 
Graphics, this is accomplished by pulling down the View menu and 
selecting the Interface Properties dialog box, as shown in Figure 6.3. Here 
you see the open Paper Layout tab that enables you to opt for landscape 
orientation.

Confirmatory factor analyses

Because (a) the structural portion of a full structural equation model 
involves relations among only latent variables, and (b) the primary con-
cern in working with a full SEM model is to assess the extent to which 
these relations are valid, it is critical that the measurement of each 
latent variable is psychometrically sound. Thus, an important prelimi-
nary step in the analysis of full latent variable models is to test first for 
the validity of the measurement model before making any attempt to 
evaluate the structural model. Accordingly, CFA procedures are used in 
testing the validity of the indicator variables. Once it is known that the 
measurement model is operating adequately,2 one can then have more 
confidence in findings related to the assessment of the hypothesized 
structural model.

In the present case, CFAs were conducted for indicator variables 
derived from each of the two multidimensional scales; these were the 
Teacher Stress Scale (TSS; Pettegrew & Wolf, 1982), which included all 
organizational indicator variables except Classroom Climate, and the 
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Maslach Burnout Inventory (MBI; Maslach & Jackson, 1986), measuring 
the three facets of burnout. The hypothesized CFA model of the TSS is 
portrayed in Figure 6.4.

Of particular note here is the presence of double-headed arrows 
among all six factors. Recall from Chapter 2 and earlier in this chapter 
that AMOS Graphics assumes no correlations among the factors. Thus, 
should you wish to estimate these values in accordance with the related 
theory, they must be present in the model. However, rest assured that the 
program will definitely prompt you should you neglect to include one or 
more factor correlations in the model. Another error message that you are 
bound to receive at some time prompts that you forgot to identify the data 
file upon which the analyses are to be based. For example, Figure 6.5 pres-
ents the error message triggered by my failure to establish the data file a 
priori. However, this problem is quickly resolved by clicking on the Data 
File icon (  ); or select Data Files from the File drop-down menu, which 
then triggers the dialog box shown in Figure 6.6. Here you simply locate 
and click on the data file, and then click on Open. This action subsequently 

Figure 6.3 AMOS Graphics: Interface Properties dialog box.
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produces the Data Files dialog box shown in Figure 6.7, where you will 
need to click on OK.

Although goodness-of-fit for both the MBI (CFI = .98) and TSS (CFI = .973) 
were found to be exceptionally good, the solution for the TSS was somewhat 

RoleA
RA1 err11 1

RA2

RC1

RC2

WO1

WO2

DM1

DM2

SS1

SS2

PS1

PS2

1 err2

RoleC
err31 1

1 err4

WorkO
err51 1

1 err6

DecM
err71 1

1 err8

SupS
err91 1

1 err10

PeerS
err111 1

1 err12

Figure 6.4 Hypothesized confirmatory factor analytic model of the Teacher Stress 
Scale.
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problematic. More specifically, a review of the standardized estimates 
revealed a correlation value of 1.041 between the factors of Role Conflict and 
Work Overload, an indication of possible multicollinearity; these standard-
ized estimates are presented in Table 6.1.

Multicollinearity arises from the situation where two or more vari-
ables are so highly correlated that they both essentially represent the same 
underlying construct. Substantively, this finding is not surprising as there 
appears to be substantial content overlap among TSS items measuring 

Figure 6.5 AMOS Graphics: Error message associated with failure to define data 
file.

Figure 6.6 AMOS Graphics: Defining location and selection of data file.
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role conflict and work overload. The very presence of a correlation > 1.00 
is indicative of a solution that is clearly inadmissible. Of course, the flip 
side of the coin regarding inadmissible solutions is that they alert the 
researcher to serious model misspecifications. However, a review of the 
modification indices (see Table 6.2) provided no help whatsoever in this 
regard. All parameter change statistics related to the error covariances 

Figure 6.7 AMOS Graphics: Finalizing the data file.

Table 6.1 Selected AMOS Output 
for CFA Model of the Teacher 

Stress Scale: Factor Correlations

Factor correlations Estimate

RoleA <--> RoleC .841
RoleC <--> WorkO 1.041
WorkO <--> DecM –.612
DecM <--> SupS .924
WorkO <--> SupS –.564
RoleA <--> WorkO .771
RoleA <--> DecM –.750
RoleC <--> SupS –.592
RoleA <--> SupS –.665
SupS <--> PeerS .502
DecM <--> PeerS .630
WorkO <--> PeerS –.421
RoleC <--> PeerS –.419
RoleA <--> PeerS –.518
RoleC <--> DecM –.622
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revealed nonsignificant values less than, or close to, 0.1, and all modifi-
cation indices (MIs) for the regression weights (or factor loadings) were 
less than 10.00, again showing little to be gained by specifying any cross-
loadings. In light of the excellent fit of Model 2 of the TSS, together with 
these nonthreatening MIs, I see no rational need to incorporate additional 
parameters into the model. Thus, it seemed apparent that another tactic 
was needed in addressing this multicollinearity issue.

One approach that can be taken in such instances is to combine the 
measures as indicators of only one of the two factors involved. In the pres-
ent case, a second CFA model of the TSS was specified in which the factor 
of Work Overload was deleted, albeit its two observed indicator variables 
were loaded onto the Role Conflict factor. Although goodness-of-fit related 

Table 6.2 Selected AMOS Output for 
Hypothesized Model of Teacher Stress 

Survey: Modification Indices

M.I. Par change

Covariances
err10 <--> err12 15.603 .056
err10 <--> err11 10.023 –.049
err9 <--> err12 17.875 –.066
err9 <--> err11 10.605 .056
err8 <--> err11 7.333 –.056
err8 <--> err10 13.400 .065
err8 <--> err9 6.878 –.053
err7 <--> err10 11.646 –.062
err3 <--> SupS 7.690 –.066
err3 <--> err11 7.086 –.061
err3 <--> err6 9.875 –.107
err2 <--> err12 6.446 .043
err2 <--> err11 7.646 –.051
err1 <--> err6 7.904 .083

Regression weights

PS2 <--- RC1 7.439 .060
PS1 <--- RC1 9.661 –.074
SS1 <--- WO1 6.247 –.057
DM1 <--- WorkO 6.121 –.101
RC1 <--- SupS 7.125 –.088
RC1 <--- SS2 7.206 –.077
RC1 <--- SS1 7.970 –.080
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to this five-factor model of the TSS (χ2
(48) = 215.360; CFI = .958; RMSEA = 

.055) was somewhat less well fitting than for the initially hypothesized 
model, it nevertheless represented an exceptionally good fit to the data. 

Table 6.3 Selected AMOS Output for CFA Model 2 of 
Teacher Stress Survey: Model Summary

Computation of degrees of freedom

Number of distinct sample moments: 78
Number of distinct parameters to be estimated: 30
Degrees of freedom (78 – 30): 48

Result
Minimum was achieved.
Chi-square = 215.360
Degrees of freedom = 48
Probability level = .000

Table 6.4 Selected AMOS Output for CFA Model 2 of 
Teacher Stress Survey: Unstandardized and Standardized 

Estimates

Estimate S.E. C.R. P

Regression weights
RA1 <--- RoleA 1.000
RA2 <--- RoleA 1.185 .071 16.729 ***
DM2 <--- DecM 1.349 .074 18.247 ***
PS1 <--- PeerS 1.000
PS2 <--- PeerS 1.002 .064 15.709 ***
RC1 <--- RoleC 1.000
RC2 <--- RoleC 1.312 .079 16.648 ***
DM1 <--- DecM 1.000
WO1 <--- RoleC 1.079 .069 15.753 ***
WO2 <--- RoleC .995 .071 13.917 ***
SS1 <--- DecM 1.478 .074 19.934 ***
SS2 <--- DecM 1.550 .075 20.667 ***

Standardized regression weights
RA1 <--- RoleA .718
RA2 <--- RoleA .824
DM2 <--- DecM .805

 (continued)

RT63727.indb   171 7/6/09   7:26:28 PM



172 Structural equation modeling with AMOS 2nd edition

The model summary and parameter estimates are shown in Tables 6.3 and 
6.4, respectively.

This five-factor structure served as the measurement model for the 
TSS throughout analyses related to the full causal model. However, as 
a consequence of this measurement restructuring, the revised model of 
burnout shown in Figure 6.8 replaced the originally hypothesized model 
(see Figure 6.2) in serving as the hypothesized model to be tested. Once 
again, in the interest of clarity, the factor correlations and errors of mea-
surement are not included.

Table 6.4 Selected AMOS Output for CFA Model 2 of 
Teacher Stress Survey: Unstandardized and Standardized 

Estimates (Continued)

Estimate S.E. C.R. P

Standardized regression weights
PS1 <--- PeerS .831
PS2 <--- PeerS .879
RC1 <--- RoleC .700
RC2 <--- RoleC .793
DM1 <--- DecM .688
WO1 <--- RoleC .738
WO2 <--- RoleC .641
SS1 <--- DecM .889
SS2 <--- DecM .935

Covariances
RoleA <--> RoleC .428 .041 10.421 ***
RoleA <--> DecM –.355 .035 –10.003 ***
DecM <--> PeerS .321 .036 8.997 ***
RoleC <--> PeerS –.263 .036 –7.338 ***
RoleA <--> PeerS –.288 .034 –8.388 ***
DecM <--> RoleC –.342 .037 –9.292 ***

Correlations
RoleA <--> RoleC .800
RoleA <--> DecM –.698
DecM <--> PeerS .538
RoleC <--> PeerS –.419
RoleA <--> PeerS –.523
DecM <--> RoleC –.592

*** probability < .000
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At the beginning of this chapter, I mentioned that AMOS Graphics 
operates on the WYSIWYG principle, and therefore unless regression 
paths and covariances are specified in the model, they will not be esti-
mated. I promised to revisit this issue, and I do so here. In the case of full 
SEM structures failure to include double-headed arrows among the exog-
enous factors, as in Figure 6.8 (Role Ambiguity, Role Conflict, Classroom 
Climate, Decision Making, Superior Support, and Peer Support), prompts 
AMOS to alert you with a related error message. However, this omission is 
easily addressed. For every neatly drawn model that you submit for anal-
ysis, AMOS produces its own model behind the scenes. Thus, in revising 
any model for reanalyses, it is very easy and actually best simply to work 
on this backstage version, which can become very messy as increasingly 
more parameters are added to the model (see, e.g., Figure 6.9).

Selected AMOS output: Hypothesized model

Before examining test results for the hypothesized model, it is instructive 
to first review summary notes pertinent to this model, which are presented 
in four sections in Table 6.5. The initial information advises that (a) the 

Figure 6.9 AMOS Graphics: Behind-the-scenes working file for hypothesized 
model of teacher burnout.
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analyses are based on 528 sample moments (32 [indicator measures] × 33 / 2), 
(b) there are 92 parameters to be estimated, and (c) by subtraction there are 
436 degrees of freedom. The next section reports on the bottom-line infor-
mation that the minimum was achieved in reaching a convergent solution, 
thereby yielding a χ2 value of 1030.892 with 436 degrees of freedom.

Summarized in the lower part of the table are the dependent and 
independent factors in the model. Specifically, there are five dependent 
(or endogenous) factors in the model (DP; ELC; EE; PA; SE). Each of these 
factors has single-headed arrows pointing at it, thereby easily identifying 
it as a dependent factor in the model. The independent (or exogenous) 
factors are those hypothesized as exerting an influence on the dependent 
factors; these are RA, RC, DM, SS, PS, and CC.

Table 6.5 Selected AMOS Output for Hypothesized 
Model: Summary Notes

Computation of degrees of freedom

Number of distinct sample moments: 528
Number of distinct parameters to be estimated: 92
Degrees of freedom (528 – 92): 436

Result

Minimum was achieved.
Chi-square = 1030.892
Degrees of freedom = 436
Probability level = .000

Dependent factors in the model
Unobserved, endogenous variables
DP
ELC
EE
PA
SE

Independent factors in the model
Unobserved, exogenous variables
RA
RC
DM
SS
PS
CC
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Model assessment

Goodness-of-fit summary
Selected goodness-of-fit statistics related to the hypothesized model are 
presented in Table 6.6. In Table 6.5, we observed that the overall χ2 value, 
with 436 degrees of freedom, is 1030.892. Given the known sensitivity of 
this statistic to sample size, however, use of the χ2 index provides little 
guidance in determining the extent to which the model does not fit. Thus, 
it is more reasonable and appropriate to base decisions on other indices 
of fit. Primary among these in the AMOS Output are the CFI and RMSEA 
values.3 Furthermore, given that we shall be comparing a series of mod-
els in our quest to obtain a final well-fitting model, the ECVI is also of 
interest.

In reviewing these fit indices, we see that the hypothesized model is 
relatively well fitting as indicated by a CFI of .941 and a RMSEA value of 
.048, which is well within the recommended range of acceptability (< .05 
to .08). In addition, the ECVI for this initially hypothesized model is 2.032. 
This value, as noted earlier in the book, has no substantive meaning; 
rather, it is used within a relative framework. (For a review of these rule-
of-thumb guidelines, you may wish to consult Chapter 3, where goodness-
of-fit indices are described in more detail.)

Table 6.6 Selected AMOS Output for Hypothesized Model:  
Goodness-of-Fit Statistics

Baseline comparisons

NFI RFI IFI TLI

Model Delta1 rho1 Delta2 rho2 CFI

Default model .903 .889 .941 .933 .941
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA
Model RMSEA LO 90 HI 90 PCLOSE
Default model .048 .044 .052 .833
Independence model .184 .181 .188 .000

ECVI
Model ECVI LO 90 HI 90 MECVI
Default model 2.032 1.881 2.195 2.050
Saturated model 1.766 1.766 1.766 1.869
Independence model 17.817 17.263 18.382 17.823
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Modification indices

Over and above the fit of the model as a whole, however, a review of the 
MIs reveals some evidence of misfit in the model. Because we are inter-
ested solely in the causal paths of the model at this point, only a subset of 
indices related to the regression weights is included in Table 6.7. Turning 
to this table, you will note that the first 10 MIs are enclosed in a rectangle. 
These parameters represent the structural (i.e., causal) paths in the model 
and are the only MIs of interest. The reason for this statement is because 
in working with full SEMs, any misfit to components of the measurement 
model should be addressed when that portion of the model is tested for its 
validity. Some of the remaining MIs in Table 6.7 represent the cross-load-
ing of an indicator variable onto a factor other than the one it was designed 
to measure (EE3 <--- CC). Others represent the regression of one indicator 
variable on another; these MIs are substantively meaningless.4

In reviewing the information encased within the rectangle, we note 
that the maximum MI is associated with the regression path flowing 
from Classroom Climate to Depersonalization (DP<--- CC). The value 
of 24.776 indicates that, if this parameter were to be freely estimated 
in a subsequent model, the overall χ2 value would drop by at least this 

Table 6.7 Selected AMOS Output for 
Hypothesized Model: Modification Indices

Regression 
weights M.I. Par Change

SE <---EE 10.039 –.047
SE <---ELC 9.253 –.138
SE <---DP 17.320 –.099
ELC <---RC 19.554 .108
ELC <---RA 6.905 .060
ELC <---EE 10.246 .047
ELC <---SE 20.273 –.184
ELC <---DP 8.513 .068
DP <---CC 24.776 –.351
DP <---SE 12.249 –.260
EE3 <---CC 9.711 –.220
EE3 <---DM 6.915 –.085
EE3 <---RA 10.453 .135
•
•
•
•
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amount. If you turn now to the parameter change statistic related to 
this parameter, you will find a value of –0.351; this value represents the 
approximate value that the newly estimated parameter would assume. 
I draw your attention also to the four highlighted regression path MIs. 
The common link among these parameters is that the direction of the 
path runs counter to the general notion of the postulated causal model. 
That is, given that the primary focus is to identify determinants of 
teacher burnout, the flow of interest is from left to right; these high-
lighted paths flow from right to left. Although, admittedly, there may 
be some legitimate reciprocal paths, they are not of substantive interest 
in the present study.

In data preparation, the TSS items measuring Classroom Climate 
were reflected such that low scores were indicative of a poor classroom 
milieu, and high scores, of a good classroom milieu. From a substantive 
perspective, it would seem perfectly reasonable that elementary school 
teachers whose responses yielded low scores for Classroom Climate 
should concomitantly display high levels of depersonalization. Given the 
meaningfulness of this influential flow, then, the model was reestimated 
with the path from Classroom Climate to Depersonalization specified 
as a freely estimated parameter; this model is subsequently labeled as 
Model 2. Results related to this respecified model are subsequently dis-
cussed within the framework of post hoc analyses.

Post Hoc analyses
Selected AMOS output: Model 2

In the interest of space, only the final model of burnout, as determined 
from the following post hoc model-fitting procedures, will be displayed. 
However, relevant portions of the AMOS output pertinent to each respeci-
fied model are presented and discussed.

Model assessment

Goodness-of-fit summary
The estimation of Model 2 yielded an overall χ2

(435) value of 995.019, a CFI 
of .945, and a RMSEA of .046; the ECVI value was 1.975. Although the 
improvement in model fit for Model 2, compared with that of the origi-
nally hypothesized model, would appear to be trivial on the basis of 
the CFI and RMSEA values, the model difference nonetheless was sta-
tistically significant (∆χ2

(1) = 35.873). Moreover, the parameter estimate 
for the path from Classroom Climate to Depersonalization was slightly 
higher than the one predicted by the expected parameter change statistic 
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(–0.479 versus –0.351), and it was statistically significant (C.R. = –5.712). 
Modification indices related to the structural parameters for Model 2 are 
shown in Table 6.8.

Modification indices
In reviewing the boxed statistics presented in Table 6.8, we see that there 
are still nine MIs that can be taken into account in the determination of 
a well-fitting model of burnout, albeit four of these (highlighted and dis-
cussed earlier) are not considered in light of their reverse order of causal 
impact. The largest of these qualifying MIs (MI = 20.311) is associated with 
a path flowing from Self-Esteem to External Locus of Control (ELC <--- 
SE), and the expected value is estimated to be –.184. Substantively, this 
path again makes good sense as it seems likely that teachers who exhibit 
high levels of self-esteem are likely to exhibit low levels of external locus 
of control. On the basis of this rationale, we again focus on the path asso-
ciated with the largest MI. Accordingly, the causal structure was again 
respecified—this time, with the path from Self-Esteem to External Locus 
of Control freely estimated (Model 3).

Table 6.8 Selected AMOS Output for 
Model 2: Modification Indices

Regression 
weights M.I.

Par 
change

SE <--- EE 9.898 –.047
SE <--- ELC 9.156 –.138
SE <--- DP 14.692 –.092
ELC<--- RC 19.604 .108
ELC<--- RA 6.906 .060
ELC<--- EE 10.291 .047
ELC<--- SE 20.311 –.184
ELC<--- DP 7.774 .066
DP <--- SE 11.422 –.236
EE3 <--- CC 14.843 –.274
EE3 <--- DM 7.568 –.089
EE3 <--- RA 11.108 .140
•
•
•
•
DP2 <--- PA2 6.968 –.103
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Selected AMOS output: Model 3

Model assessment
Goodness-of-fit summary Model 3 yielded an overall χ2

(434) value of 
967.244, with CFI = .947 and RMSEA = .045; the ECVI was 1.932. Again, 
the χ2 difference between Models 2 and 3 was statistically significant 
(∆χ2

(1) = 27.775). Modification indices related to Model 3 are shown in 
Table 6.9. Of initial import here is the fact that the number of MIs has now 
dropped from nine to only four, with only one of the original four reverse-
order causal links now highlighted. This discrepancy in the number of MI 
values between Model 2 and Model 3 serves as a perfect example of why 
the incorporation of additional parameters into the model must be done 
one at a time.

Modification indices
Reviewing the boxed statistics here, we see that the largest MI (17.074) is 
associated with a path from Self-Esteem to Emotional Exhaustion (EE <--- 
SE). However, it is important that you note that an MI (9.642) related to the 
reverse path involving these factors (SE <--- EE) is also included as an MI. As 
emphasized in Chapter 3, parameters identified by AMOS as belonging in 
a model are based on statistical criteria only; of more import, is the substan-
tive meaningfulness of their inclusion. Within the context of the original 
study, the incorporation of this latter path (SE <--- EE) into the model would 
make no sense whatsoever since its primary purpose was to validate the 
impact of organizational and personality variables on burnout, and not the 

Table 6.9 Selected AMOS Output for  
Model 3: Modification Indices

Regression 
weights M.I. Par change

SE <--- EE 9.642 –.046
EE <--- SE 17.074 –.408
ELC <--- RC 14.322 .090
DP <--- SE 11.467 –.236
EE3 <--- CC 14.858 –.274
EE3 <--- DM 6.916 –.085
EE3 <--- RA 11.117 .140
•
•
•
•
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reverse. Thus, again we ignore this suggested model modification.5 Because 
it seems reasonable that teachers who exhibit high levels of self-esteem may, 
concomitantly, exhibit low levels of emotional exhaustion, the model was 
reestimated once again, with this path freely estimated (Model 4).

Selected AMOS output: Model 4

Model assessment
Goodness-of-fit summary The estimation of Model 4 yielded a χ2 

value of 943.243, with 433 degrees of freedom. Values related to the CFI 
and RMSEA were .949 and .044, respectively; the ECVI value was 1.895. 
Again, the difference in fit between this model (Model 4) and its prede-
cessor (Model 3) was statistically significant (∆χ2

(1) = 24.001). Modification 
indices related to the estimation of Model 4 are presented in Table 6.10.

Modification indices
In reviewing these boxed statistics, note that the MI associated with the 
former regression path flowing from Emotional Exhaustion to Self-Esteem 
(SE <--- EE) is no longer present. We are left only with the paths leading 
from Role Conflict to External Locus of Control (ELC <--- RC), and from 
Self-Esteem to Depersonalization (DP <--- SE). Although the former is the 
larger of the two (MI = 15.170 versus 10.277), the latter exhibits the larger 
parameter change statistic (–.225 versus .093). Indeed, some methodologists 
(e.g., Kaplan, 1989) have suggested that it may be more appropriate to base 
respecification on size of the parameter change statistic, rather than on the 
MI (but recall Bentler’s [2005] caveat noted in Chapter 3, footnote 8 that these 
values can be affected by both the scaling and identification of factors and 
variables). Given that this parameter is substantively meaningful, Model 4 
was respecified to include the estimation of a regression path leading from 
Self-Esteem to Depersonalization in a model now labeled Model 5.

Table 6.10 Selected AMOS Output for 
Model 4: Modification Indices

Regression 
weights M.I. Par change

ELC <--- RC 15.170 .093
DP <--- SE 10.277 –.225
EE3 <--- CC 14.213 –.266
EE3 <--- DM 6.419 –.081
EE3 <--- RA 10.156 .133
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Selected AMOS output: Model 5 assessment

Goodness-of-fit summary
Results from the estimation of Model 5 yielded a χ2

(432) value of 928.843, 
a CFI of .951, and a RMSEA of .044; the ECVI value was 1.874. Again, 
the improvement in model fit was found to be statistically significant 
(∆χ2

(1) = 14.400). Finally, the estimated parameter value (–.315), which 
exceeded the parameter change statistic estimated value, was also sta-
tistically significant (C.R. = –.3.800). Modification indices related to this 
model are presented in Table 6.11.

Modification indices
Not unexpectedly, a review of the output related to Model 5 reveals an 
MI associated with the path from Role Conflict to External Locus of 
Control (ELC <--- RC); note that the expected parameter change statistic 
has remained minimally unchanged (.092 versus .093). Once again, from 
a substantively meaningful perspective, we could expect that high lev-
els of role conflict would generate high levels of external locus of control, 
thereby yielding a positive expected parameter change statistic value. 
Thus, Model 5 was respecified with the path (ELC <--- RC) freely esti-
mated, and labeled as Model 6.

Selected AMOS output: Model 6

Up to this point in the post hoc modeling process, we have focused on 
only the addition of parameters to the model. Given that all additional 
structural paths, as identified by the MIs, were found to be justified, we 
need to look now at the flip side of the coin—those originally specified 
structural paths that are shown to be redundant to the model. This issue 
of model parsimony is addressed in this section.

Model assessment
Goodness-of-fit summary Estimation of Model 6 yielded an overall χ2

(431) 
value of 890.619; again, the χ2 difference between Models 5 and 6 was statisti-
cally significant (∆χ2

(1) = 38.224), as was the estimated parameter (.220, C.R. = 
5.938), again much larger than the estimated parameter change statistic value 
of .092. Model fit statistics were as follows: CFI = .954 and RMSEA = .042; and 
the ECVI dropped a little further to 1.814, thereby indicating that Model 6 
represented the best fit to the data thus far in the analyses. As expected, 
no MIs associated with structural paths were present in the output; only 
MIs related to the regression weights of factor loadings remained. Thus, no 
further consideration was given to the inclusion of additional parameters. 
Unstandardized estimates related to Model 6 are presented in Table 6.12.
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The issue of model parsimony
Thus far, discussion related to model fit has focused solely on the addi-
tion of parameters to the model. However, another side to the question 
of fit, particularly as it pertains to a full model, is the extent to which 

Table 6.11 Selected AMOS Output for  
Model 5: Modification Indices

Regression 
weights M.I. Par change

ELC <--- RC 15.018 .092
EE3 <--- CC 14.167 –.266
EE3 <--- DM 6.738 –.084
EE3 <--- RA 10.655 .137
EE3 <--- SE 12.563 –.265
EE3 <--- ELC 10.180 .259
EE3 <--- DP 6.390 .108
EE3 <--- PA 22.520 –.265
EE3 <--- PA1 19.718 –.171
EE3 <--- ELC5 6.593 .117
EE3 <--- ELC3 6.245 .132
EE3 <--- CC1 8.821 –.166
EE3 <--- CC2 12.087 –.180
EE3 <--- CC4 12.397 –.156
EE3 <--- SE3 10.572 –.180
EE3 <--- SE1 11.125 –.221
EE3 <--- SE2 6.045 –.141
EE3 <--- PA3 14.149 –.135
EE3 <--- PA2 12.627 –.129
EE3 <--- ELC2 9.459 .157
EE3 <--- SS1 6.569 –.065
EE3 <--- RA2 12.402 .111
ELC5 <--- CC2 6.477 .084
ELC5 <--- SE2 6.345 –.092
ELC4 <--- CC 10.326 –.155
ELC4 <--- CC3 8.802 –.119
ELC4 <--- CC4 10.106 –.096
CC1 <--- RC 7.393 –.074
•
•
•
•
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Table 6.12 Selected AMOS Output for Model 6: Unstandardized Estimates 
Regression Weights: Structural Paths

Estimate S.E. C.R. P

SE <--- DM .734 .204 3.592 ***
SE <--- SS –.475 .151 –3.147 .002
SE <--- PS –.042 .071 –.595 .552
EE <--- RC .782 .081 9.694 ***
EE <--- CC –.361 .109 –3.309 ***
EE <--- SE –.544 .111 –4.889 ***
DP <--- EE .326 .040 8.217 ***
DP <--- RC –.051 .061 –.839 .402
ELC <--- DM –.035 .025 –1.400 .161
DP <--- CC –.469 .083 –5.636 ***
ELC <--- SE –.182 .045 –4.056 ***
DP <--- SE –.310 .082 –3.766 ***
ELC <--- RC .220 .037 5.938 ***
PA <--- DP –.229 .051 –4.476 ***
PA <--- EE –.058 .033 –1.773 .076
PA <--- RA –.096 .045 –2.145 .032
PA <--- SE .217 .071 3.042 .002
PA <--- ELC –.068 .076 –.895 .371
DP2 <--- DP 1.000
DP1 <--- DP 1.166 .074 15.853 ***
RA2 <--- RA 1.000
RA1 <--- RA .852 .050 16.949 ***
RC2 <--- RC 1.346 .082 16.481 ***
RC1 <--- RC 1.000

Factor covariances

RA <--> RC .486 .044 11.011 ***
DM <--> CC .183 .027 6.673 ***
DM <--> SS 1.116 .077 14.507 ***
SS <--> PS .478 .049 9.756 ***
DM <--> PS .536 .049 10.827 ***
PS <--> CC .101 .021 4.856 ***
RA <--> DM –.627 .053 –11.777 ***
RA <--> SS –.630 .054 –11.570 ***
RA <--> PS –.345 .038 –9.159 ***
RA <--> CC –.150 .023 –6.539 ***
RC <--> DM –.508 .050 –10.092 ***
 (continued)
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certain initially hypothesized paths may be irrelevant to the model as 
evidenced from their statistical nonsignificance. In reviewing the struc-
tural parameter estimates for Model 6, we see highlighted five param-
eters that are nonsignificant; these parameters represent the paths from 
Peer Support to Self-Esteem (SE <--- PS; C.R.= –.595), from Role Conflict 
to Depersonalization (DP <--- RC; C.R.= –.839), from Decision Making 
to External Locus of Control (ELC <--- DM; –1.400), from Emotional 
Exhaustion to Personal Accomplishment (PA <--- EE; –1.773), and from 
External Locus of Control to Personal Accomplishment (PA <--- ELC; 
–.895). In the interest of parsimony, then, a final model of burnout needs 
to be estimated with these five structural paths deleted from the model. 
Importantly, as can be seen in Table 6.12, given that the factor of Peer 
Support (PS) neither has any influence on other factors nor is influenced 
by other factors in the model, it no longer has any meaningful relevance 
and thus needs also to be eliminated from the model. Finally, before leav-
ing Model 6 and Table 6.12, note that all factor variances and covariances 
are found to be statistically significant.

Because standardized estimates are typically of interest in presenting 
results from structural equation models, it is usually of interest to request 
these statistics when you have determined your final model. Given that 
Model 7 will serve as our final model representing the determinants of 
teacher burnout, this request was made by clicking on the Analysis Properties 
icon (  ), which, as demonstrated in Chapter 5, triggers the related dialog box 
and tabs. Select the Output tab and elect to have the standardized estimates 

Table 6.12 Selected AMOS Output for Model 6: Unstandardized Estimates 
Regression Weights: Structural Paths (Continued)

Estimate S.E. C.R. P

Factor Covariances

RC <--> SS –.498 .051 –9.751 ***
RC <--> PS –.262 .034 –7.644 ***
RC <--> CC –.152 .022 –6.929 ***
SS <--> CC .163 .029 5.629 ***

Factor Variances

RA .654 .060 10.879 ***
RC .575 .065 8.890 ***
DM .988 .085 11.566 ***
SS 1.360 .090 15.103 ***
PS .668 .057 11.626 ***
CC .240 .028 8.717 ***

*** probability < .000
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included in the output file. In addition, it is also cogent to ask for the squared 
multiple correlations, an option made available on the same tab.

Selected AMOS output: Model 7 (final model)

As this revised model represents the final full SEM model to be tested in 
this chapter, several components of the AMOS output file are presented 
and discussed. We begin by reviewing results related to the model assess-
ment, which are displayed in Table 6.13.

Model assessment
Goodness-of-fit summary As shown in Table 6.13, estimation of this 

final model resulted in an overall χ2
(382) value of 803.875. At this point, you 

may wonder why there is such a big difference in this χ2 value and its 
degrees of freedom compared with all previous models. The major rea-
son, of course, is due to the deletion of one factor from the model (Peer 
Support).6 Relatedly, this deletion changed the number of sample moments, 
which in turn substantially altered the number of degrees of freedom. 

Table 6.13 Selected AMOS Output for Model 7 (Final Model):  
Goodness-of-Fit Statistics

Model NPAR CMIN DF P CMIN/DF

Default model 83 803.875 382 .000 2.104
Saturated model 465 .000 0
Independence model 30 9812.661 435 .000 22.558

Baseline comparisons

NFI RFI IFI TLI

Model Delta1 rho1 Delta2 rho2 CFI

Default model .918 .907 .955 .949 .955
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Default model .043 .039 .047 .998
Independence model .190 .187 .193 .000

ECVI

Model ECVI LO 90 HI 90 MECVI

Default model 1.622 1.492 1.765 1.637
Saturated model 1.555 1.555 1.555 1.640
Independence model 16.509 15.976 17.054 16.515
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To ensure that you completely understand how these large differences 
occurred, let’s just review this process as outlined earlier in the book.

The Peer Support factor had two indicator variables, PS1 and PS2. 
Thus, following its deletion, the number of observed measures dropped 
from 32 to 30. Based on the formula (p × [p + 1]/2) discussed earlier in the 
book, this reduction resulted in 30 × 31/2 (465) distinct sample moments 
(or elements in the covariance matrix). Given the estimation of 83 param-
eters, the number of degrees of freedom is 382 (465 – 83). By comparison, 
had we retained the Peer Support factor, the number of sample moments 
would have been 32 × 33/2 (528). The number of estimated parameters 
would have increased by 9 (1 factor loading, 2 error variances, 1 factor 
variance, and 5 factor covariances), resulting in a total of 92, and 436 
(528 – 92) degrees of freedom. However, in the interest of scientific parsi-
mony, as noted earlier, given its presence as an isolated factor having no 
linkages with other factors in the model, I consider it most appropriate 
to exclude the factor of Peer Support from the model. Of import here is 
that this resulting change to the model now renders it no longer “nested” 
within the original model. As such, it would be inappropriate to calculate 
a chi-square difference value.

As evidenced from the remaining goodness-of-fit indices, this final 
model represented an excellent fit to the data (CFI = .955; RMSEA = .039). 
The ECVI value of 1.622 signals that this final, and most parsimonious, 
model represents the best fit to the data overall. We turn next to an exami-
nation of the parameter estimates, which are presented in Table 6.14.

Parameter estimates
Both the unstandardized and standardized estimates are presented in 
Table 6.14. However, in the interest of space, they are shown for only the 
structural paths and factor covariances; all factor and error variances (not 
shown), however, were found to be statistically significant. Turning first 
to the unstandardized estimates for the structural parameter paths, we 
see that all are statistically significant as indicated by the critical values 
and their related p-values. In a review of the standardized estimates, how-
ever, there are two values that are somewhat worrisome given their values 
greater than 1.00; these represent the paths flowing from Decision Making 
to Self-Esteem (SE <--- DM) and from Superior Support to Self-Esteem (SE 
<--- SS). Although all remaining standardized estimates are sound, the 
two aberrant estimates signal the need for further investigation.

A review of the factor covariances again shows all to be statistically 
significant. However, in reviewing the standardized estimates, we again 
see a disturbingly high correlation between the factors of Decision Making 
and Superior Support (DM <---> SS), which clearly ties in with the exces-
sively high estimates for the related factors noted in the previous section. 
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Table 6.14 Selected AMOS Output for Model 7 (Final Model): 
Unstandardized and Standardized Estimates

Estimate S.E. C.R. P

Structural paths (regression weights)
SE <--- DM .614 .130 4.723 ***
SE <--- SS –.393 .110 –3.559 ***
EE <--- RC .777 .080 9.743 ***
EE <--- CC –.363 .109 –3.332 ***
EE <--- SE –.554 .110 –5.019 ***
DP <--- EE .317 .034 9.422 ***
DP <--- CC –.450 .080 –5.622 ***
DP <--- SE –.289 .081 –3.569 ***
PA <--- DP –.288 .044 –6.533 ***
PA <--- RA –.132 .040 –3.307 ***
PA <--- SE .240 .070 3.427 ***
ELC<--- SE –.193 .044 –4.390 ***
ELC<--- RC .252 .030 8.483 ***

Standardized regression weights

SE <--- DM 1.393
SE <--- SS –1.038
EE <--- RC .490
EE <--- CC –.147
EE <--- SE –.203
DP <--- EE .477
DP <--- CC –.275
DP <--- SE –.159
PA <--- DP –.377
PA <--- RA –.174
PA <--- SE .173
ELC<--- SE –.205
ELC<--- RC .463

Factor covariances

RA <--> RC .490 .044 11.054 ***
DM <--> CC .187 .028 6.715 ***
DM <--> SS 1.120 .077 14.529 ***
RA <--> DM –.634 .054 –11.811 ***
RA <--> SS –.629 .054 –11.555 ***
RA <--> CC –.149 .023 –6.523 ***
RC <--> DM –.517 .051 –10.185 ***

(continued)
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Given these related atypical estimates, I consider it important to further 
probe the appropriateness of factors specified as determinants of teacher 
burnout. Before closing out this chapter, I return to this important and 
challenging issue, but first, let’s complete our review of this final model 
by turning to results for the squared multiple correlations (SMCs), which 
are reported in Table 6.15.

The SMC is a useful statistic that is independent of all units of mea-
surement. Once it is requested, AMOS provides an SMC for each endog-
enous variable in the model. Thus, in Table 6.15, you will see SMC values 
for each dependent factor in the model (SE, EE, DP, PA, ELC) and for each 
of the factor-loading regression paths (EE1 to RA2). The SMC value repre-
sents the proportion of variance that is explained by the predictors of the 
variable in question. For example, in order to interpret the SMC associ-
ated with Self-Esteem (SE; circled), we need first to review Figure 6.9 to 
ascertain which factors in the model serve as its predictors. Accordingly, 
we determine that 24.6% of the variance associated with Self-Esteem is 
accounted for by its two predictors—Decision Making (DM) and Superior 
Support (SS). Likewise, we can determine that the factor of Superior 
Support explains 90.2% of the variance associated with its second indica-
tor variable (SS2; circled). The final version of this model of burnout for 
elementary teachers is schematically presented in Figure 6.10.

Table 6.14 Selected AMOS Output for Model 7 (Final Model): 
Unstandardized and Standardized Estimates (Continued)

Estimate S.E. C.R. P

Factor covariances
RC <--> SS –.504 .051 –9.825 ***
RC <--> CC –.152 .022 –6.913 ***
SS <--> CC .161 .029 5.575 ***

Factor correlations

RA <--> RC .797
DM <--> CC .381
DM <--> SS .960
RA <--> DM –.784
RA <--> SS –.668
RA <--> CC –.378
RC <--> DM –.679
RC <--> SS –.568
RC <--> CC –.407
SS <--> CC .282

*** probability < .000
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Table 6.15 Selected AMOS 
Output for Model 7 (Final Model): 

Squared Multiple Correlations

Parameter Estimate

SE .242
EE .447
DP .516
PA .337
ELC .324
EE1 .792
EE2 .840
EE3 .752
DP1 .696
DP2 .561
PA1 .732
PA2 .509
PA3 .515
ELC1 .480
ELC2 .332
ELC3 .540
ELC4 .442
ELC5 .632
CC1 .384
CC2 .590
CC3 .438
CC4 .485
SE1 .595
SE2 .667
SE3 .804
SS1 .794
SS2 .902
DM1 .505
DM2 .649
WO1 .574
WO2 .408
RC1 .465
RC2 .622
RA1 .520
RA2 .672
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Let’s return now to the problematic estimates noted earlier with respect 
to structural paths leading from Self-Esteem (SE) to Decision Making (DM), 
and to Superior Support (SS), and the factor correlation between DM and 
SS. Clearly the difficulty arises from an overlap of content in the items mea-
suring these three constructs. Aside from a thorough investigation of the 
items involved, another approach might be to specify and test two alterna-
tive models of teacher burnout. In the first model (Model A), combine the 
factors of DM and SS by loading the two SS  indicator variables onto the DM 
factor, as we did in the case of Role Conflict and Work Overload. In the  sec-
ond model (Model B), delete the factor of SS completely from the model. 
Schematic presentations of Models A and B are presented in Figures 6.11 
and 6.12, respectively. Although restrictions of space prevent me from 
addressing these analyses here, I strongly encourage you to experiment 
yourself in testing these two alternative models using the same data that 
were used in testing the hypothesized model tested in this chapter, which 
can be found in the book’s companion Web site.

In working with structural equation models, it is very important to 
know when to stop fitting a model. Although there are no firm rules or 
regulations to guide this decision, the researcher’s best yardsticks include 

Figure 6.11 Alternative hypothesized model of teacher burnout: Combined 
 decision making and superior support factors (Model A).
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(a) a thorough knowledge of the substantive theory, (b) an adequate 
assessment of statistical criteria based on information pooled from vari-
ous indices of fit, and (c) a watchful eye on parsimony. In this regard, the 
SEM researcher must walk a fine line between incorporating a sufficient 
number of parameters to yield a model that adequately represents the 
data, and falling prey to the temptation of incorporating too many param-
eters in a zealous attempt to attain the best-fitting model statistically. Two 
major problems with the latter tack are that (a) the model can comprise 
parameters that actually contribute only trivially to its structure, and (b) 
the more parameters there are in a model, the more difficult it is to repli-
cate its structure should future validation research be conducted.

In bringing this chapter to a close, it may be instructive to summarize 
and review findings from the various models tested. First, of 13 causal paths 
specified in the revised hypothesized model (see Figure 6.8), eight were 
found to be statistically significant for elementary teachers. These paths 
reflected the impact of (a) classroom climate and role conflict on emotional 
exhaustion; (b) decision making and superior support on self-esteem; (c) 
self-esteem, role ambiguity, and depersonalization on perceived personal 
accomplishment; and (d) emotional exhaustion on depersonalization. 

Figure 6.12 Alternative hypothesized model of teacher burnout: Superior Support 
factor deleted (Model B).
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Second, five paths, not specified a priori (classroom climate → depersonal-
ization; self-esteem → external locus of control; self-esteem → emotional 
exhaustion; role conflict → external locus of control; and  self-esteem → 
 depersonalization), proved to be essential components of the causal struc-
ture; given their substantive meaningfulness, they were subsequently 
added to the model. Third, five hypothesized paths (peer support → self-es-
teem; role conflict → depersonalization; decision making → external locus 
of control; emotional exhaustion → personal accomplishment; and exter-
nal locus of control → personal accomplishment) were not statistically sig-
nificant and were therefore deleted from the model. Finally, in light of the 
ineffectual impact of peer support on burnout for elementary teachers, this 
construct was also deleted from the model. In broad terms, based on our 
findings from this full SEM application, we can conclude that role ambigu-
ity, role conflict, classroom climate, participation in the decision-making 
process, and the support of one’s superiors are potent organizational deter-
minants of burnout for elementary school teachers. The process, however, 
appears to be strongly tempered by one’s sense of self-worth.

Endnotes
 1. To facilitate interpretation, particular items were reflected such that high 

scores on Role Ambiguity, Role Conflict, Work Overload, EE, DP, and 
External Locus of Control represented negative perceptions, and high scores 
on the remaining constructs represented positive perceptions.

 2. For example, it may be that to attain a more appropriate CFA model in repre-
senting the data at hand, the specification of a cross-loading or error covari-
ance is needed.

 3. Although my recommendation would be to include also the standardized 
root mean square residual (SRMR; see Byrne, 2006), the value of which 
should be < .10, this coefficient is not specifically included in the model fit 
section of the AMOS output file.

 4. As previously noted, the present version of AMOS provides no mechanism 
for excluding MIs such as these from the output file.

 5. Of course, had a nonrecursive model represented the hypothesized model, 
such feedback paths would be of interest.

 6. Had we left that factor in, we would have gained five degrees of freedom 
due to the deletion of five structural paths, thereby changing the number of 
degrees of freedom to 436.
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sevenchapter 

Testing for the factorial 
equivalence of scores from 
a measuring instrument
(First-order CFA model)

Up to this point, all applications have illustrated analyses based on single 
samples. In this section, however, we focus on applications involving more 
than one sample where the central concern is whether or not components 
of the measurement model and/or the structural model are equivalent 
(i.e., invariant) across particular groups of interest. Throughout this chap-
ter and others involving multigroup applications, the terms equivalence 
and invariance are used synonymously (likewise, the adjectives equivalent 
and invariant); use of either term is merely a matter of preference.

In seeking evidence of multigroup equivalence, researchers are typi-
cally interested in finding the answer to one of five questions. First, do 
the items comprising a particular measuring instrument operate equiva-
lently across different populations (e.g., gender, age, ability, and culture)? 
In other words, is the measurement model group-invariant? Second, is 
the factorial structure of a single instrument or of a theoretical construct 
equivalent across populations as measured either by items of a single 
assessment measure, or by subscale scores from multiple instruments? 
Typically, this approach exemplifies a construct validity focus. In such 
instances, equivalence of both the measurement and structural models 
are of interest. Third, are certain paths in a specified causal structure 
equivalent across populations? Fourth, are the latent means of particu-
lar constructs in a model different across populations? Finally, does the 
factorial structure of a measuring instrument replicate across indepen-
dent samples drawn from the same population? This latter question, of 
course, addresses the issue of cross-validation. Applications presented in 
this chapter, as well as the next two chapters, provide you with specific 
examples of how each of these questions can be answered using struc-
tural equation modeling based on the AMOS graphical approach. The 
applications illustrated in Chapters 7 and 9 are based on the analysis of 
covariance structures (COVS), whereas the application in Chapter 8 is 
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based on the analysis of mean and covariance structures (MACS). When 
analyses are based on COVS, only the variances and covariances of the 
observed variables are of interest; all single-group applications illustrated 
thus far in this book have been based on the analysis of COVS. However, 
when analyses are based on MACS, the modeled data include both sample 
means and covariances. Details related to the MACS approach to invari-
ance are addressed in Chapter 8.

In this first multigroup application, we test hypotheses related to the 
invariance of a single measuring instrument across two different panels 
of teachers. Specifically, we test for equivalency of the factorial measure-
ment (i.e., scale items) of the Maslach Burnout Inventory (MBI; Maslach 
& Jackson, 1986)1 and its underlying latent structure (i.e., relations among 
dimensions of burnout) across elementary and secondary teachers. 
Purposes of the original study, from which this example is taken (Byrne, 
1993), were (a) to test for the factorial validity of the MBI separately for 
each of three teacher groups, (b) given findings of inadequate fit, to pro-
pose and test an alternative factorial structure, (c) to cross-validate this 
structure over independent samples within each teacher group, and (d) 
to test for the equivalence of item measurements and theoretical struc-
ture across the three teaching panels. Only analyses bearing on tests for 
equivalence across total samples of elementary (n = 1,159) and secondary 
(n = 1,384) teachers are of interest in the present chapter.2 Before reviewing 
the model under scrutiny, however, allow me first to provide you with a 
brief overview of the general procedure involved in tests for equivalence 
across groups.

Testing for multigroup invariance: 
The general notion
Development of a procedure capable of testing for multigroup invariance 
derives from the seminal work of Jöreskog (1971b). Accordingly, Jöreskog 
recommended that all tests for equivalence begin with a global test of the 
equality of covariance structures across the groups of interest. Expressed 
more formally, this initial step tests the null hypothesis (H0), Σ1 = Σ2 = ... ΣG, 
where Σ is the population variance–covariance matrix, and G is the number 
of groups. Rejection of the null hypothesis then argues for the nonequiva-
lence of the groups and, thus, for the subsequent testing of increasingly 
restrictive hypotheses in order to identify the source of nonequivalence. 
On the other hand, if H0 cannot be rejected, the groups are considered to 
have equivalent covariance structures, and, thus, tests for invariance are not 
needed. Presented with such findings, Jöreskog  recommended that group 
data should be pooled and all subsequent investigative work based on sin-
gle-group analyses.
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Although this omnibus test appears to be reasonable and fairly 
straightforward, it often leads to contradictory findings with respect to 
equivalencies across groups. For example, sometimes the null hypothesis 
is found to be tenable, yet subsequent tests of hypotheses related to the 
equivalence of particular measurement or structural parameters must be 
rejected (see, e.g., Jöreskog, 1971b). Alternatively, the global null hypoth-
esis may be rejected, yet tests for the equivalence of measurement and 
structural invariance hold (see, e.g., Byrne, 1988a). Such inconsistencies in 
the global test for equivalence stem from the fact that there is no baseline 
model for the test of invariant variance–covariance matrices, thereby mak-
ing it substantially more restrictive than is the case for tests of invariance 
related to sets of model parameters. Indeed, any number of inequalities 
may possibly exist across the groups under study. Realistically, then, test-
ing for the equality of specific sets of model parameters would appear to be 
the more informative and interesting approach to multigroup invariance.

In testing for equivalencies across groups, sets of parameters are 
put to the test in a logically ordered and increasingly restrictive fashion. 
Depending on the model and hypotheses to be tested, the following sets of 
parameters are most commonly of interest in answering questions related 
to multigroup equivalence: (a) factor loadings, (b) factor covariances, 
and (c) structural regression paths. Historically, the Jöreskog tradition of 
invariance testing held that the equality of error variances and their cova-
riances should also be tested. However, it is now widely accepted that to 
do so represents an overly restrictive test of the data. Nonetheless, there 
may be particular instances where findings bearing on the equivalence or 
nonequivalence of these parameters can provide important information 
(e.g., scale items); we’ll visit this circumstance in the present chapter.

The testing strategy

Testing for factorial equivalence encompasses a series of hierarchical steps 
that begins with the determination of a baseline model for each group sep-
arately. This model represents the one that best fits the data from the per-
spectives of both parsimony and substantive meaningfulness. Addressing 
the somewhat tricky combination of model fit and model parsimony, it 
ideally represents one for which fit to the data and minimal parameter 
specification are optimal. Following completion of this preliminary task, 
tests for the equivalence of parameters are conducted across groups at 
each of several increasingly stringent levels. Jöreskog (1971b) argued that 
these tests should most appropriately begin with scrutiny of the measure-
ment model. In particular, the pattern of factor loadings for each observed 
measure is tested for its equivalence across the groups. Once it is known 
which measures are group-invariant, these parameters are constrained 
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equal while subsequent tests of the structural parameters are conducted. 
As each new set of parameters is tested, those known to be group-invari-
ant are cumulatively constrained equal. Thus, the process of determining 
nonequivalence of measurement and structural parameters across groups 
involves the testing of a series of increasingly restrictive hypotheses. We 
turn now to the invariance tests of interest in the present chapter.

The hypothesized model
In my preliminary single-group analyses reported in Byrne (1993), I found 
that, for each teacher group, MBI Items 12 and 16 were extremely prob-
lematic; these items were subsequently deleted, and a model proposed 
in which only the remaining 20 items were used to measure the underly-
ing construct of burnout.3 This 20-item version of the MBI provides the 
basis for the hypothesized model under test in the determination of the 
baseline model for each teacher group and is presented schematically in 
Figure 7.1. If this model fits the data well for both groups of teachers, it 
will remain the hypothesized model under test for equivalence across the 
two groups. On the other hand, should the hypothesized model of MBI 
structure exhibit a poor fit to the data for either elementary or secondary 
teachers, it will be modified accordingly and become the hypothesized 
multigroup model under test. We turn now to this requisite analysis.

Establishing baseline models: The general notion

Because the estimation of baseline models involves no between-group 
constraints, the data can be analyzed separately for each group. However, 
in testing for invariance, equality constraints are imposed on particular 
parameters and, thus, the data for all groups must be analyzed simulta-
neously to obtain efficient estimates (Bentler, 2005; Jöreskog & Sörbom, 
1996a); the pattern of fixed and free parameters nonetheless remains con-
sistent with the baseline model specification for each group.4 However, it 
is important to note that because measuring instruments are often group 
specific in the way they operate, it is possible that these baseline models 
may not be completely identical across groups (see Bentler, 2005; Byrne, 
Shavelson, & Muthén, 1989). For example, it may be that the best-fitting 
model for one group includes an error covariance (see, e.g., Bentler, 2005) 
or a cross-loading (see, e.g., Byrne, 1988b, 2004; Reise, Widaman, & Pugh, 
1993), whereas these parameters may not be specified for the other group. 
Presented with such findings, Byrne et al. (1989) showed that by imple-
menting a condition of partial measurement invariance, multigroup analyses 
can still continue. As such, some but not all measurement parameters are 
constrained equal across groups in the testing for structural equivalence 
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Figure 7.1 Initially hypothesized model of 20-item MBI structure for elementary 
and secondary teachers.
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or latent factor mean differences. It is important to note, however, that over 
the intervening years, the concept of partial measurement equivalence has 
sparked a modest debate in the technical literature (see Millsap & Kwok, 
2004; Widaman & Reise, 1997). Nonetheless, its application remains a pop-
ular strategy in testing for multigroup equivalence and is especially so in 
the area of cross-cultural research. The perspective taken in this book is 
consistent with our original postulation that a priori knowledge of major 
model specification differences is critical to the application of invariance-
testing procedures.

Establishing the baseline models: Elementary and  
secondary teachers

In testing for the validity of scores related to the proposed 20-item MBI 
model for each teacher group, findings were consistent across panels in 
revealing exceptionally large error covariances between Items 1 and 2, 
and between Items 5 and 15. As was discussed in Chapter 4, these error 
covariances can reflect overlapping content between each item pair. 
Although overlap between Items 1 and 2 was also problematic with the 
narrower sample of elementary male teachers (see Chapter 4), its presence 
here with respect to the much larger samples of elementary and second-
ary teachers (no gender split) further substantiates the troublesome nature 
of these two MBI items, both of which are designed to measure emotional 
exhaustion. Item 1 expresses the notion of feeling emotionally drained 
from one’s work; Item 2 talks about feeling used up at the end of the day. 
Clearly, these two items appear to be expressing the same idea, albeit the 
wording has been slightly modified. In a similar manner, Items 5 and 15, 
both designed to measure depersonalization, showed the same overlap-
ping effects for the gender-free full sample of elementary and secondary 
teachers. Item 5 asks the respondent to reflect on the extent to which he or 
she treats some students as impersonal objects, while Item 15 taps into the 
feeling of not caring what happens to some students.5

Because many readers may wish to replicate these analyses based on 
the same data found on the book’s companion Web site, I consider it worth-
while to discuss briefly the findings pertinent to each group of teachers. 
We turn first to the elementary teachers. With a modification index (MI) of 
189.195 and an expected parameter change statistic (EPC) of .466, it is clear 
that the error covariance between Items 1 and 2 represents a major model 
misspecification. Likewise, the same situation holds for the error covari-
ance involving Items 5 and 15 (MI = 56.361; EPC = .284),6 albeit somewhat 
less dramatically. In addition, based on Model 3 in which the two previous 
error covariances were specified, results revealed an MI value of 44.766 and 
a EPC value of .337 related to an error covariance between Items 6 and 5. 
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Although these values are relatively high and close to those for the error 
covariance between Items 5 and 15, support for their specification is more 
difficult to defend substantively. Item 6, designed to measure Emotional 
Exhaustion, relates to stress incurred from working with people all day. 
In contrast, Item 5 is designed to measure Depersonalization and taps into 
the sense that the teacher feels he or she treats some students as if they 
are impersonal objects. Given an obvious lack of coherence between these 
two items, I consider it most appropriate not to add the error covariance 
between Items 5 and 6 to the model.

Let’s turn now to the results for secondary teachers. Consistent with 
findings for elementary teachers, the initial test of the hypothesized 
model revealed excessively large MI (276.497) and EPC (.522) values rep-
resenting an error covariance between Items 1 and 2. Likewise, results 
based on a test of Model 2 yielded evidence of substantial misspecifica-
tion involving an error covariance between Items 5 and 15 (MI = 99.622; 
EPC = .414). In contrast to elementary teachers, however, results did not 
suggest any misspecification between the error terms related to Items 5 
and 6. Nonetheless, an MI value of 45.104 related to an error covariance 
between Items 7 and 21 called for examination. Given the relatively small 
value of the EPC (.225), together with the incompatibility of item content, 
I dismissed the specification of this parameter in the model. Both items 
are designed to measure Personal Accomplishment. Whereas Item 7 sug-
gests that the respondent deals effectively with student problems, Item 21 
suggests that he or she deals effectively with emotional problems encoun-
tered in work. Although the content is somewhat similar from a general 
perspective, I contend that the specificity of Item 21 in targeting emotional 
problems argues against the specification of this parameter.

Although these modifications to the initially hypothesized model of 
MBI structure resulted in a much better fitting model for both elemen-
tary teachers (χ2

(165) = 638.49; CFI = .92; RMSEA = .06) and secondary 
teachers (χ2

(165) = 1083.39; CFI = .92; RMSEA = .06), the fit nonetheless was 
modestly good at best. However, in my judgment as explained above, it 
would be inappropriate to incorporate further changes to the model. As 
always, attention to parsimony is of utmost importance in SEM, and this 
is especially true in tests for multigroup equivalence. The more an origi-
nally hypothesized model is modified at this stage of the analyses, the 
more difficult it is to determine measurement and structural equivalence. 
Goodness-of-fit statistics related to the determination of the baseline mod-
els for each teacher group are summarized in Table 7.1.

Findings from this testing for a baseline model ultimately yielded 
one that was identically specified for elementary and secondary teach-
ers. However, it is important to point out that just because the revised 
model was similarly specified for each teacher group, this fact in no 
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way guarantees the equivalence of item measurements and underlying 
 theoretical structure; these hypotheses must be tested statistically. For 
example, despite an identically specified factor loading, it is possible that, 
with the imposition of equality constraints across groups, the tenability of 
invariance does not hold; that is, the link between the item and its target 
factor differs across the groups. Such postulated equivalencies, then, must 
be tested statistically.

As a consequence of modifications to the originally hypothesized 
20-item MBI structure in the determination of baseline models, the hypoth-
esized model under test in the present example is the revised 20-item MBI 
structure as schematically depicted in Figure 7.2. At issue is the extent 
to which its factorial structure is equivalent across elementary and sec-
ondary teachers. More specifically, we test for the equivalence of the fac-
tor loadings (measurement invariance) and factor correlations (structural 
invariance) across the teaching panels. In addition, it is instructive to test 
for cross-group equivalence of the two error covariances as this informa-
tion reflects further on the validity of these particular items.

Modeling with AMOS Graphics
When working with analysis of covariance structures that involve mul-
tiple groups, the data related to each must of course be made known to 
the program. Typically, for most SEM programs, the data reside in some 
external file, the location of which is specified in an input file. In contrast, 
however, given that no input file is used with the graphical approach to 
AMOS analyses,7 both the name of each group and the location of its data 
file must be communicated to the program prior to any analyses involving 
multiple groups. This procedure is easily accomplished via the Manage 
Groups dialog box, which, in turn, is made available by pulling down the 
Model-Fit menu and selecting the “Manage Groups” option as shown in 
Figure 7.3. Once you click on this option, you will be presented with the 
Manage Groups dialog box shown in Figure 7.4. However, when first pre-
sented, the text you will see in the dialog box will be Group Number 1. To 
indicate the name of the first group, click on New and replace the former 
text with the group name as shown for Elementary Teachers in Figure 7.4. 
Clicking on New again yields the text Group Number 2, which is replaced 
by the name Secondary Teachers. With more than two groups, each click 
produces the next group number and the process is repeated until all 
groups have been identified.

Once the group names have been established, the next task is to iden-
tify a data file for each. This procedure is the same as the one demon-
strated earlier in the book for single groups, the only difference being that 
a filename for each group must be selected. The Data File dialog box for the 
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Figure 7.2 Hypothesized multigroup baseline model of MBI structure.

RT63727.indb   206 7/6/09   7:26:38 PM



Chapter seven: Testing for the factorial equivalence of instrument scores 207

present application that includes information related to both elementary 
(N = 1,159) and secondary (N = 1,384) teachers is shown in Figure 7.5.

Finally, specification of multigroup models in AMOS Graphics is 
guided by several basic default rules. One such default is that all groups 

Figure 7.3 AMOS Graphics: Analyze drop-down menu showing selection of 
Manage Groups.

Figure 7.4 AMOS Graphics: Manage Groups dialog box showing labeling of a 
new group (Elementary Teachers).
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in the analysis will have the identical path diagram structure, unless 
explicitly declared otherwise. As a consequence, a model structure needs 
only to be drawn for the first group; all other groups will have the same 
structure by default. Thus, the hypothesized multigroup model shown in 
Figure 7.2 represents the one to be tested for its invariance across elemen-
tary and secondary teachers. On the other hand, should the baseline mod-
els be shown to differ in some way for each group, specific precautions 
that address this situation must be taken (for an example of this type of 
application, see Byrne, 2004).

Testing for multigroup invariance: 
The configural model
Having keyed in the name associated with each group, together with the 
related data files, we are now ready to proceed with the analyses. The ini-
tial step in testing for invariance requires only that the same number of fac-
tors and the factor-loading pattern be the same across groups. As such, no 
equality constraints are imposed on any of the parameters. Thus, the same 
parameters that were estimated in the baseline model for each group sepa-
rately are again estimated in this multigroup model. In essence, then, you 
can think of the model being tested here as a multigroup representation 
of the baseline models. Accordingly, it incorporates the baseline models 
for elementary and secondary teachers within the same file. In the meth-
odological literature, this model is commonly termed the configural model; 

Figure 7.5 AMOS Graphics: Data Files dialog box: Identification of data files.
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relatedly, we test for configural invariance. Of particular import in testing 
for configural invariance is that although the factor structure for each group 
is similar, it is not identical. Because no equality constraints are imposed on 
any parameters in the model, no determination of group differences related 
to either the items or the factor covariances can be made. Such claims derive 
from subsequent tests for invariance to be described shortly.

Given that we have already conducted this test in the establishment 
of baseline models, you are no doubt wondering why it is necessary to 
repeat the process. This multigroup model serves two important func-
tions. First, it allows for invariance tests to be conducted across the two 
groups simultaneously. In other words, parameters are estimated for 
both groups at the same time. Second, in testing for invariance, the fit 
of this configural model provides the baseline value against which all 
subsequently specified invariance models are compared. Despite the 
multigroup structure of this and subsequent models, analyses yield 
only one set of fit statistics for overall model fit. When ML estimation is 
used, the χ2 statistics are summative and, thus, the overall χ2 value for 
the multigroup model should equal the sum of the χ2 values obtained 
when the baseline model is tested separately for each group of teach-
ers.8 Consistent with single-group analyses, goodness-of-fit for this mul-
tigroup parameterization should exhibit a good fit to the data for both 
groups. Realistically, however, these multigroup fit statistics can never 
be better than those determined for each group separately. Thus, in light 
of only modestly good fit related to the baseline model for both elemen-
tary and secondary teachers, we cannot expect to see better results for 
this initial multigroup model.

Before testing for invariance related to the configural model, I 
addressed the caveat noted in note 8 (see end of chapter) and checked the 
Emulisrel6 option listed on the Estimation tab of the Analysis Properties dia-
log box, illustrated in Figure 7.6. Because the AMOS output file for multi-
group models may seem a little confusing at first, I now review selected 
portions as they relate to this initial model.

Selected AMOS output: The configural model 
(No equality constraints imposed)

Although this output definitely relates to the multigroup model, the pro-
gram additionally provides separate information for each group under 
study. Because the basic output format for single-group analyses has 
been covered earlier in the book, I limit my review here to the Parameter 
Summary as it pertains only to elementary teachers. All other portions of 
the output focus on results for the two groups in combination. Let’s turn 
first to Figure 7.7.
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In reviewing Figure 7.7, you will see the usual text output tree in the 
narrow column on the left, from which you can select the portion of the 
output you wish to review. Not shown here due to space restrictions is the 
continuation of this vertical column where group names are listed. Given 
that I clicked on Elementary Teachers before selecting Parameter Summary 
from the output file tree, I was presented with the content shown in 
Figure 7.7; clicking on Secondary Teachers, of course, would yield results 
pertinent to that group. In this section of the output file, AMOS focuses 
on fixed and freely estimated parameters, the latter being further clas-
sified as Labeled and Unlabeled. Labeled parameters are those that are 
constrained equal to another group or parameter. Specifying equality 

Figure 7.7 AMOS Graphics: Parameter summary for elementary teachers.

Figure 7.6 AMOS Graphics: Estimation tab of Output dialog box.
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constraints related to parameters was detailed in Chapter 5; specification 
for groups will be covered later in this chapter. Because no constraints 
have been imposed in this configural model, the output text shows zero 
labeled parameters. The only relevant parameters for this model are the 
regression paths representing the factor loadings (termed Weights), vari-
ances, and covariances, all of which are freely estimated.

Turning to results for the regression paths, we note that 23 are fixed, 
and 17 are freely estimated. The fixed parameters represent the 20 regres-
sion paths associated with the error terms, in addition to the three factor 
regression paths fixed to 1.00 for purposes of model identification; the 17 
unlabeled parameters represent the estimated factor loadings. Continuing 
through the remainder of the table, the five covariances represent rela-
tions among the three factors plus the two error covariances. Finally, the 
23 variances refer to the 20 error variances in addition to the 3 factor vari-
ances. In total, the number of parameters specified for the hypothesized 
multigroup model of MBI structure shown in Figure 7.2 is 68, of which 23 
are fixed, and 45 freely estimated. However, recall that this number per-
tains only to one group—elementary teachers.

Let’s turn now to Figure 7.8, where degrees of freedom information 
for the multigroup model is summarized. Under the heading Computation 
of Degrees of Freedom (Your Model), we find three lines of information. The 

Figure 7.8 AMOS Graphics: Summary notes related to multigroup configural 
model.
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first line relates to the number of sample moments (i.e., number of  elements 
in the combined covariance matrices). In Chapter 2, you learned how to 
calculate this number for a single group. However, it may be helpful to 
review the computation relative to a multigroup application. Given that 
there are 20 observed variables (i.e., 20 items) in the hypothesized model, 
we know that, for one group, this would yield 210 (20 × 21 / 2) pieces of 
information (or, in other words, sample moments). Thus, for two groups, 
this number would be 420.

Line 2 in Figure 7.8 relates to the number of estimated parameters in 
the model. In Figure 7.7, we observed that this number (for elementary 
teachers) was 45 (17 + 5 + 23). Taking into account both groups, then, we 
have 90 estimated parameters. Degrees of freedom are reported on line 3 
to be 330. Given 420 sample moments and 90 estimated parameters, this 
leaves us with 420 – 90 = 330 degrees of freedom. (For a review and expla-
nation of these calculations, see Chapter 2.)

Model assessment

Let’s turn now to Table 7.2, in which the goodness-of-fit statistics for this 
multigroup model are reported. The key values to note are those of the 

Table 7.2 Goodness-of-Fit Statistics for Configural Model

Model NPAR CMIN DF P CMIN/DF

Your model 90 1962.345 330 .000 5.946
Saturated model 420 .000 0
Independence 
model

40 20445.418 380 .000 53.804

Baseline comparisons

Model
NFI 

Delta1
RFI  
rho1

IFI 
Delta2

TLI  
rho2 CFI

Your model .904 .889 .919 .906 .919
Saturated model 1.000 1.000 1.000
Independence 
model

.000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Your model .044 .042 .046 1.000
Independence 
model

.144 .142 .146 .000
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χ2 statistic, the CFI, and the RMSEA; the ECVI value is irrelevant in this 
context.

Results related to this first multigroup model testing for configural 
invariance reveal the χ2 value to be 1,962.345 with 330 degrees of freedom. 
The CFI and RMSEA values, as expected, are .919 and .044, respectively. 
From this information, we can conclude that the hypothesized multigroup 
model of MBI structure is modestly well fitting across elementary and sec-
ondary teachers.

Having established goodness-of-fit for the configural model, we 
now proceed in testing for the invariance of factorial measurement and 
structure across groups. However, because you need to know how tests 
for invariance are specified using AMOS Graphics before trying to fully 
grasp an understanding of the invariance-testing process in and of itself, 
I present this material in two parts. First, I introduce you to two different 
approaches to testing for multigroup invariance in AMOS—manual versus 
automated—and then walk you through a test for invariance of the hypoth-
esized multigroup model (see Figure 7.2) across elementary and secondary 
teachers within the framework of the manual approach. Application of the 
automated approach to testing for multigroup invariance is discussed and 
illustrated in Chapters 8 and 9.

Testing for measurement and structural 
invariance: The specification process

In testing for configural invariance, interest focused on the extent to 
which the number of factors and pattern of their structure were simi-
lar across elementary and secondary teachers. In contrast, in testing for 
measurement and structural invariance, interest focuses more specifi-
cally on the extent to which parameters in the measurement and struc-
tural components of the model are equivalent across the two groups. This 
testing process is accomplished by assigning equality constraints on 
particular parameters (i.e., the parameters are constrained equal across 
groups). The procedure operates in such a way that these parameters are 
estimated for the first group only; estimates for all remaining groups are 
constrained equal to those of the first group. In AMOS Graphics, con-
straints can be specified via two approaches: (a) individually assigning 
a label to each parameter to be held equal across groups, the approach 
taken in the earlier edition of this book (Byrne, 2001); and (b) using the 
automated models of parameter subsets contained in the Multiple Group 
dialog box. This latter approach was developed subsequent to the pub-
lication of the first edition. Although any parameters that are unlabeled 
will be freely estimated using the manual approach to invariance speci-
fication, this dictum does not hold for the automated approach. Despite 
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the specification of selected parameters as freely estimated, their 
assigned labels remain on the graphical representation of the model 
albeit the related parameters are freely estimated (J. L. Arbuckle, per-
sonal communication, June 7, 2008). I begin by introducing you to the 
manual labeling approach to specification of equality constraints and 
then follow with the automated approach.

The manual multiple-group approach
In testing for invariance, my preference is to follow the classical approach, 
which entails first running a model in which only the factor loadings are 
constrained equal (i.e., a measurement model). Provided with evidence of 
group equivalence, these factor-loading parameters remain constrained and 
equality constraints are then placed on the factor variances and covariances 
(i.e., structural model). Although error variances associated with each of the 
observed variable items are also part of the measurement model, testing for 
their equality across groups is considered to be excessively stringent and 
therefore is rarely implemented. On the other hand, in our testing for the 
validity of the MBI, we determined two very strong and group-consistent 
error covariances. For both statistical and substantive reasons, I consider it 
important to include these particular error parameters in our test for invari-
ance of the measurement model. First, each error covariance was found to 
be excessively large in both groups. Second, scrutiny of the related items 
revealed highly overlapping content across each aberrant pair of items. Such 
redundancy can reflect itself in the form of error covariation. Taking these 
two perspectives into account, it seems prudent to ascertain whether the two 
error covariance parameters hold across teaching panels as such evidence 
speaks to the problematic nature of the content related to these MBI items.

Specification of equality constraints using the manual approach entails 
two related steps. It begins by first clicking on the parameter you wish to label 
and then right-clicking on the mouse to produce the Object Properties dialog 
box (illustrated in previous chapters). Once this box is opened, the Parameter 
tab is activated, and then the label entered in the space provided in the bot-
tom left corner. This process is graphically shown in Figure 7.9 as it relates 
to the labeling of the second factor regression path representing the load-
ing of Item 2 on Factor 1 (Emotional Exhaustion). Once the cursor is clicked 
on the selected parameter, the latter takes on a red color. Right-clicking the 
mouse subsequently opens the Object Properties dialog box, where you can 
see that I have entered the label L2 in the lower left corner under the heading 
Regression Weight. The second part of this initial step requires that you click 
on the All Groups box (shown within the ellipse in Figure 7.9). Checking this 
box tells the program that the parameter applies to both groups.9

Turning to Figure 7.10, you will see the factor loadings and two error 
covariances of the hypothesized model labeled and ready for a statistical 
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testing of their invariance. However, three aspects of Figure 7.10 are note-
worthy. First, selected labeling of parameters is purely arbitrary. In the 
present case, I chose to label the factor-loading regression paths as L. Thus, 
L2, for example, represents the loading of Item 2 on Factor 1. Second, you 
will note that the value of 1.00, assigned to the first of each congeneric set of 
indicator variables, remains as such and has not been relabeled with an “L”; 
given that this parameter is already constrained to equal 1.00, its value will 
be constant across the two groups. Finally, the somewhat erratic labeling of 
the factor-loading paths that may occur is a function of the automated label-
ing process provided in AMOS. Although, technically, it should be possible 
to shift these labels to a more appropriate location using the Move Parameter 
tool (  ), this transition does not work well when there are several labeled 
parameters located in close proximity to one another, as is the case here. 
This malfunction appears to be related to the restricted space allotment 
assigned to each parameter. To use the Move Parameters tool, click either on 

Figure 7.9 AMOS Graphics: Object Properties dialog box showing labeling of 
parameter.
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Figure 7.10 Baseline model with equality constraints specified for all factor 
loadings.

RT63727.indb   216 7/6/09   7:26:43 PM



Chapter seven: Testing for the factorial equivalence of instrument scores 217

its icon in the toolbox, or on its name from the Edit drop-down menu. Once 
this tool is activated, point the cursor at the parameter you wish to relabel; 
the selected parameter will then take on a red color. Holding the left mouse 
button down will generate a broken line rectangle; continuing to hold this 
button enables you to move the rectangle to another location in close prox-
imity to the selected parameter. This process is illustrated in Figure 7.11 as 
it relates to factor loading 8 (L8) representing Item 20.

As labeled, the hypothesized multigroup model in Figure 7.10 speci-
fies the following parameters to be tested for group invariance: (a) 17 fac-
tor loadings, and (b) 2 error covariances (Items 1 and 2; Items 5 and 15).

Because the automated multiple approach to tests for invariance pres-
ents a fully labeled model by default (i.e., labeling associated with the fac-
tor loadings, variances, and covariances as well as the error variances), I 
additionally include here a model in which the factor variances and cova-
riances, as well as the factor loadings and two error covariances, are pos-
tulated to be invariant (see Figure 7.12).

The automated multiple-group approach
This procedure is activated by either clicking on the Multiple Group icon  
( ), or by pulling down the Analyze menu and clicking on the Multiple 

Figure 7.11 AMOS Graphics: Illustration of the Move Parameter tool in action.
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Figure 7.12 Baseline model with equality constraints specified for all factor load-
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RT63727.indb   218 7/6/09   7:26:44 PM



Chapter seven: Testing for the factorial equivalence of instrument scores 219

Group tab as shown in Figure 7.13. Either action automatically produces 
the Multiple Group Analysis dialog box shown in Figure 7.14.

On the left side of this dialog box, you will see a list of parameter sub-
sets, and along the top, a series of eight numbers, under each of which is a 
column of small squares. The darkest checkmarks that you see in the dialog 
box are default and represent particular models to be tested. When the dia-
log box is first opened, you will observe the three defaulted models shown 
in Figure 7.14. The checkmark in the first column (identified as “1”) indicates 
a model in which only the factor loadings (i.e., measurement weights) are 
constrained equal across groups (Model 1). Turning to Columns 2 and 3, we 
see both dark and grayed checkmarks. The darkest checkmarks in Column 
2 indicate a model in which all estimated factor loadings, as well as fac-
tor variances and covariances (i.e., structural covariances), are constrained 
equal across groups (Model 2); those in Column 3 represent a model having 
all estimated factor loadings, factor variances, factor covariances, and error 
variances (i.e., measurement residuals) constrained equal across groups 

Figure 7.13 AMOS Graphics: Analyze drop-down menu showing selection of 
multiple-group analysis.
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(Model 3). The grayed checkmarks in both columns represent parameter 
subsets that may be included in the testing of additional models.

Relating this approach to the checked dialog box shown in Figure 7.14 
would be tantamount to testing Model 1 first, followed by a test of Model 
2, as exemplified in Figures 7.10 and 7.12 for the manual approach to 
invariance. This process can continue with the addition of other param-
eter subsets, as deemed appropriate in testing any particular multigroup 
model. An important point to note in using AMOS Graphics, however, is 
the automated checkmarks related to Model 3. As noted earlier, measure-
ment error variances are rarely constrained equal across groups as this 
parameterization is considered to be an excessively stringent test of mul-
tigroup invariance. Thus, the testing of Model 3 is relatively uncommon. 
However, one example of where Model 3 would be important is when a 
researcher is interested in testing for the equality of reliability related to 
an assessment scale across groups (see, e.g., Byrne, 1988a).

Although mentioned briefly in the introduction of this section, I con-
sider it important to note again a major model specification aspect of this 
automated approach as currently implemented in AMOS (Version 17). Once 
you select the Multiple Groups option, AMOS automatically labels all param-
eters in the model whether or not you wish to constrain them equal across 
groups. For example, although we do not wish to test a multigroup model 
in which all error variances are postulated to be invariant across groups 
(Model 3), all labeling on the graphical model with respect to these param-
eters remains intact even though we wish not to have equality constraints 

Figure 7.14 AMOS Graphics: Multiple Group dialog box showing specification of 
equality constraints on all factor loadings, factor variances and covariances, and 
error variances.
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on these parameters. Removal of these checkmarks (for Model 3) is easily 
accomplished by simply clicking on them. Although these error variances 
subsequently will not be estimated, the labeling of these parameters none-
theless remains on the “behind-the-scenes” working AMOS model.

Testing for measurement and structural 
invariance: Model assessment

As noted earlier, one major function of the configural model is that it pro-
vides the baseline against which all subsequent tests for invariance are 
compared. In the Jöreskog tradition, the classical approach in arguing for 
evidence of noninvariance is based on the χ2 difference (∆χ2) test (see Chapter 
4, note 7). The value related to this test represents the difference between the 
χ2 values for the configural and other models in which equality constraints 
have been imposed on particular parameters. This difference value is dis-
tributed as χ2 with degrees of freedom equal to the difference in degrees of 
freedom. Evidence of noninvariance is claimed if this χ2 difference value 
is statistically significant. The researcher then follows up with additional 
tests aimed at targeting which parameters are accounting for these non-
invariant findings. This procedure is demonstrated in the testing of both 
measurement and structural equivalence of the MBI in this chapter.

Over the past decade or so, applied researchers have argued that from 
a practical perspective, the χ2 difference test represents an excessively strin-
gent test of invariance and particularly in light of the fact that SEM models at 
best are only approximations of reality (Cudeck & Brown 1983; MacCallum, 
Roznowski, & Necowitz, 1992). Consistent with this perspective, Cheung 
and Rensvold (2002) reasoned that it may be more reasonable to base invari-
ance decisions on a difference in CFI (∆CFI) rather than on χ2 values. Thus, 
based on a rigorous Monte Carlo study of several goodness-of-fit indices, 
Cheung and Rensvold proposed that evidence of noninvariance be based on 
a difference in CFI values exhibiting a probability < 0.01. Although this more 
recent and practical approach to testing for invariance has not been granted 
the official SEM stamp of approval to date, its use is increasingly reported in 
the literature—largely because it makes a lot of practical sense to do so. In 
reviewing results pertinent to tests for invariance of the MBI in this chapter, 
we will examine both the χ2 difference and CFI difference results.

Testing for multigroup invariance: 
The measurement model
Now that you are familiar with the procedural steps conducted in testing 
for multigroup invariance, as well as with the two approaches to imple-
mentation of these procedures made available in AMOS Graphics, we now 

RT63727.indb   221 7/6/09   7:26:46 PM



222 Structural equation modeling with AMOS 2nd edition

move on to actual implementation of these procedures as outlined earlier. 
In this chapter, we focus on only the manual approach to invariance test-
ing; Chapters 8 and 9 address the automated approach.

Turning to the task at hand here, we examine results related to the 
labeled model shown in Figure 7.10. You will recall that this model, which 
we will call Model A to distinguish it from subsequently specified mod-
els and to simplify comparison of models, tests for the equivalence of all 
factor loadings plus two error covariances (Items 1 and 2; Items 5 and 
15). Let’s turn now to these results, which are summarized in Table 7.3.

Model assessment

A review of these results, as expected, reveals the fit of this model to be 
consistent with that of the configural model (CFI = .918; RMSEA = .043). 
However, of prime importance in testing for the invariance of the factor load-
ings and two error covariances are results related to the χ2 difference and 
CFI difference tests. As noted earlier, computation of these results involves 
taking their differences from the χ2 and CFI values reported for the con-
figural model (see Table 7.2), which yields the following: ∆χ2

(19) = 35.912 and 
∆CFI = .001. Not surprisingly, given its statistical stringency, the χ2 difference 
test argues for evidence of noninvariance, whereas the CFI difference test 
argues for invariance. That the ∆χ2 test is said to argue for noninvariance is 

Table 7.3 Goodness-of-Fit Statistics for Measurement Model

Model NPAR CMIN DF P CMIN/DF

Your model 71 1998.257 349 .000 5.726
Saturated model 420 .000 0
Independence 
model

40 20445.418 380 .000 53.804

Baseline comparisons

Model
NFI 

Delta1
RFI  
rho1

IFI 
Delta2

TLI  
rho2 CFI

Your model .902 .894 .918 .911 .918
Saturated model 1.000 1.000 1.000
Independence 
model

.000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE
Your model .043 .041 .045 1.000
Independence 
model

.144 .142 .146 .000
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based on the finding that a χ2 value of 35.912, with 19 degrees of freedom, is 
shown on the χ2 distribution table to be statistically significant at a probabil-
ity value < .01. On the other hand, the ∆CFI value of .001 contends that the 
measurement model is completely invariant in that this value is less than 
the .01 cutoff point proposed by Cheung and Rensvold (2002).

Presented with these divergent findings, the decision of which one 
to accept is purely an arbitrary one and rests solely with each individual 
researcher. It seems reasonable to assume that such decisions might be 
based on both the type of data under study and/or the circumstances at 
play. For our purposes here, however, I consider it worthwhile to focus on 
the ∆χ2 results as it provides me with the opportunity to walk you through 
the subsequent steps involved in identifying which parameters in the 
model are contributing to these noninvariant findings; we press on then 
with the next set of analyses.

In testing for multigroup invariance, it is necessary to establish a logi-
cally organized strategy, the first step being a test for invariance of all 
factor loadings, which we have now been completed. Given findings of 
noninvariance at this level, we then proceed to test for the invariance of 
all factor loadings comprising each subscale (i.e., all loadings related to 
the one particular factor) separately. Given evidence of noninvariance at 
the subscale level, we then test for the invariance of each factor loading 
(related to the factor in question) separately. Of import in this process is 
that, as factor-loading parameters are found to be invariant across groups, 
their specified equality constraints are maintained, cumulatively, through-
out the remainder of the invariance-testing process.

Having determined evidence of noninvariance when all factor load-
ings are held equal across groups, our next task is to test for the invari-
ance of factor loadings relative to each subscale separately. This task is 
easily accomplished in AMOS Graphics through a simple modification of 
the existing labeled model shown in Figure 7.10. As such, we remove all 
factor-loading labels, except those associated with Emotional Exhaustion 
(Factor 1), simply by clicking on each label (to be deleted), right-clicking 
in order to trigger the Object Properties dialog box, and then deleting the 
label listed in the parameter rectangle of the dialog box (see Figure 7.9). 
Proceeding in this manner presents us with the labeled model (Model B) 
displayed in Figure 7.15; all unlabeled parameters will be freely estimated 
for both elementary and secondary teachers.

Turning to Table 7.4, we see that the testing of Model B yielded a 
χ2 value of 1969.118 with 339 degrees of freedom. This differential of 9 
degrees of freedom derives from the equality constraints placed on seven 
factor loadings (the first loading is already fixed to 1.0) plus the two error 
covariances. Comparison with the configural model yields a ∆χ2

(9) value of 
6.173, which is not statistically significant.
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Figure 7.15 Baseline model with equality constraints specified for all factor load-
ings on EE only.
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These findings advise us that all items designed to measure Emotional 
Exhaustion are operating equivalently across the two groups of teach-
ers. Our next task, then, is to test for the equivalence of items measuring 
Depersonalization. Accordingly, we place equality constraints on all freely esti-
mated factor loadings associated with Factor 2, albeit at the same time, main-
taining equality constraints for Factor 1 (Model C). Again, this specification 
simply means a modification of the model shown in Figure 7.15 in that labels 
are now added to the four estimated factor loadings for Depersonalization.

Because you are now familiar with the process involved in labeling 
these models and in the interest of space, no further figures or separate 
tables are presented for models yet to be tested. Results for these subse-
quent models are summarized in Table 7.5.

As reported in Table 7.5, the test of Model C yielded a χ2 value of 1977.807 
with 343 degrees of freedom; the additional 4 degrees of freedom derive 
from the equality constraints placed on the four estimated factor loadings 
for Factor 2. These results therefore yielded a ∆χ2

(13) value of 15.462, which 
once again is statistically nonsignificant. Provided with this informa-
tion, we now know that the problematic items are housed in the subscale 
designed to measure Personal Accomplishment. Accordingly, we proceed 

Table 7.4 Goodness-of-Fit Statistics for Measurement Model (Model 2)

CMIN

Model NPAR CMIN DF P CMIN/DF
Your model 81 1969.118 339 .000 5.809
Saturated 
model

420 .000 0

Independence 
model

40 20445.418 380 .000 53.804

Baseline comparisons

Model
NFI  

Delta1
RFI  
rho1

IFI 
Delta2

TLI  
rho2 CFI

Your model .904 .892 .919 .909 .919
Saturated 
model

1.000 1.000 1.000

Independence 
model

.000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Your model .044 .042 .045 1.000
Independence 
model

.144 .142 .146 .000
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by labeling (on the model) and testing one factor loading at a time within 
this subscale. Importantly, provided with evidence of nonsignificance 
related to a single factor loading, this invariant loading is held constrained 
during subsequent tests of the remaining items. Results related to these 
individual loadings are discussed as a group and reported in Table 7.5.

In reviewing these tests of individual factor loadings measuring Factor 
3, Personal Accomplishment, findings reveal evidence of noninvariance 
related to two items—Item 17 (p < .01) and Item 18 (p < .05) (see results 
for measurement models F and G). Item 17 suggests that the respondent 
is able to create a relaxed atmosphere with his or her students, and Item 
18 conveys the notion that a feeling of exhilaration follows from working 
closely with students. From these findings we learn that, for some reason, 
Items 17 and 18 are operating somewhat differently in their measurement 
of the intended content for elementary and secondary teachers. The task 
for the researcher confronted with these noninvariant findings is to pro-
vide possible explanations of this phenomenon.

Before moving on to a test of structural invariance, I consider it important 
to further clarify results reported in Table 7.5 with respect to measurement 
models F, G, and H. Specifically, it’s important that I explain why each of these 
models has the same number of degrees of freedom. For Model F, of course, 
16 degrees of freedom derives from the fact that we have added an equality 
constraint for Item 17 over and above the constraints specified in the previous 
model (Model E). Model G has 16 degrees of freedom because noninvariant 
Item 17 is now freely estimated with Item 18 constrained in its place. Likewise, 
Model H has 16 degrees of freedom as Item 19 replaced noninvariant Item 18, 
which is now freely estimated. Hopefully, this explanation should clear up 
any questions that you may have had concerning these results.

Testing for multigroup invariance: 
The structural model
Now that equivalence of the measurement model has been established, 
the next step in the process is to test for invariance related to the structural 
portion of the model. Although these tests can involve the factor variances 
as well as the factor covariances, many researchers consider the latter to 
be of most interest; I concur with this notion. In particular, testing for the 
invariance of factor covariances addresses concerns regarding the extent 
to which the theoretical structure underlying the MBI (in this case) is the 
same across groups.

In this part of the testing process, the model specifies all factor load-
ings except those for Items 17 and 18, in addition to the three factor covari-
ances constrained equal across elementary and secondary teachers. This 
final model is presented in Figure 7.16. Given the rather poor labeling 
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Figure 7.16 Baseline model with equality constraints specified for all factor load-
ings on EE and DP, and those representing Items 7, 9, 19, and 21 on PA.
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mechanism for this model, I show the two noninvariant factor loadings 
for Items 17 and 18 encased in a broken-line oval; the fact that their fac-
tor loading regression paths are not labeled ensures that they are freely 
estimated. Results for this test of structural invariance, as reported in 
Table 7.5, revealed the factor covariances to be equivalent across elemen-
tary and secondary teachers.

Endnotes
1.  For a detailed description of the MBI, readers are referred to Chapter 4 of the 

present volume.
2. Middle-school teachers comprised the third group.
3.  For a more detailed account of analyses leading up to the 20-item model, read-

ers are referred to the original article (Byrne, 1993).
4.  In my experience of working with multigroup models in AMOS, I have found 

it best to establish three files—one for each of the single-group analyses in 
establishing the baseline models, and one multigroup file containing the final 
best fitting baseline model for each group.

5.  As noted in Chapter 4, due to refusal of the MBI test publisher to grant copyright 
permission, I am unable to reprint the item here for your perusal.

6.  Recall that in post hoc analyses, the specification of additional parameters in 
AMOS must be done one at a time. Accordingly, the error covariance between 
items 5 and 15 was determined on the basis of Model 2, in which only the error 
covariance between Items 1 and 2 was specified.

7.   An input file is used in the case of modeling with VB.NET or C#, two analytic 
alternatives provided in the AMOS program for those who may prefer not to 
use the graphical approach (for details, see Arbuckle, 2007).

8.  Although this fact is always exactly true with the LISREL and EQS programs, it 
is exactly true in AMOS if, and only if, a checkmark is placed next to Emulisrel6 
on the Estimations tab of the Analysis Properties dialog box; otherwise, it is 
almost, but not quite exactly, true (J. L. Arbuckle, personal communication, 
June 6, 2008).

9.  Prior to AMOS 16, the All Groups box was checked by default, which meant that 
labeling a parameter in one group automatically assigned the same name to 
the corresponding parameter in another group. Since the advent of AMOS 16, 
however, the All Groups box is unchecked by default (J. L. Arbuckle, personal 
communication, June 20, 2008).
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eightchapter 

Testing for the equivalence 
of latent mean structures
(First-order CFA model)

In the years since the printing of my first AMOS book (Byrne, 2001), there 
has been a steady, yet moderate increase in reported findings from tests 
for multigroup equivalence. A review of the SEM literature, however, 
reveals most tests for invariance to have been based on the analysis of 
covariance structures (COVS), as exemplified in Chapters 7 and 9 of this 
volume. Despite Sörbom’s (1974) introduction of the mean and covariance 
structures (MACS) strategy in testing for latent mean differences over 30 
years ago, only a modicum of studies have been designed to test for latent 
mean differences across groups based on real (as opposed to simulated) 
data (see, e.g., Aikin, Stein, & Bentler, 1994; Byrne, 1988b; Cooke, Kosson, 
& Michie, 2001; Little, 1997; Marsh & Grayson, 1994; Reise, Widaman, & 
Pugh, 1993; Widaman & Reise, 1997). The aim of this chapter, then, is 
to introduce you to basic concepts associated with the analysis of latent 
mean structures, and to walk you through an application that tests for 
their invariance across two groups. Specifically, we test for differences 
in the latent means of general, academic, English, and mathematics self-
 concepts across high- and low-track secondary school students. The exam-
ple presented here draws from two published papers—one that focuses 
on methodological issues related to testing for invariant covariance and 
mean structures (Byrne et al., 1989), and one oriented toward substantive 
issues related to social comparison theory (Byrne, 1988b).

Basic concepts underlying tests 
of latent mean structures
In the usual univariate or multivariate analyses involving multigroup 
comparisons, one is typically interested in testing whether the observed 
means representing the various groups are statistically significantly differ-
ent from each other. Because these values are directly calculable from the 
raw data, they are considered to be observed values. In contrast, the means 
of latent variables (i.e., latent constructs) are unobservable; that is, they are 
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not directly observed. Rather, these latent constructs derive their  structure 
indirectly from their indicator variables, which, in turn, are directly 
observed and, hence, measurable. Testing for the invariance of mean struc-
tures, then, conveys the notion that we intend to test for the equivalence of 
means related to each underlying construct or factor. Another way of say-
ing the same thing, of course, is that we intend to test for differences in the 
latent means (of factors for each group).

For all the examples that we have considered thus far, the analyses 
have been based on covariance structures. As such, only parameters repre-
senting regression coefficients, variances, and covariances have been of 
interest. Accordingly, the covariance structure of the observed variables 
constitutes the crucial parametric information; a hypothesized model 
can thus be estimated and tested via the sample covariance matrix. One 
limitation of this level of invariance is that while the unit of measure-
ment for the underlying factors (i.e., the factor loading) is identical across 
groups, the origin of the scales (i.e., the intercepts) is not. As a conse-
quence, comparison of latent factor means is not possible, thereby leading 
Meredith (1993) to categorize this level of invariance as “weak” factorial 
invariance. This limitation notwithstanding, evidence of invariant factor 
loadings nonetheless permits researchers to move on in testing further 
for the equivalence of factor variances, factor covariances, and the pattern 
of these factorial relations, a focus of substantial interest to researchers 
interested more in construct validity issues than in testing for latent mean 
differences. These subsequent tests would continue to be based on the 
analysis of COVS.

In the analysis of covariance structures, it is implicitly assumed that 
all observed variables are measured as deviations from their means; 
in other words, their means are equal to zero. As a consequence, the 
intercept terms generally associated with regression equations are not 
relevant to the analyses. However, when the observed means take on 
nonzero values, the intercept parameter must be considered, thereby 
necessitating a reparameterization of the hypothesized model. Such is 
the case when one is interested in testing for the invariance of latent 
mean structures. To help you in understanding the concept of mean 
structures, I draw on the work of Bentler (2005) in demonstrating the 
difference between covariance and mean structures as it relates to a 
simple bivariate regression equation. Consider, first, the following 
regression equation:

 y = α + βx + ε (1)

where α is an intercept parameter. Although the intercept can assist in 
defining the mean of y, it does not generally equal the mean. Now, if we 
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take expectations of both sides of this equation, and assume that the mean 
of ε is zero, the above expression yields:

 μy = α + βμx (2)

where μy is the mean of y, and μx is the mean of x. As such, y and its mean 
can now be expressed in terms of the model parameters α, β, and μx. It is 
this decomposition of the mean of y, the dependent variable, that leads to 
the term mean structures. More specifically, it serves to characterize a model 
in which the means of the dependent variables can be expressed or “struc-
tured” in terms of structural coefficients and the means of the independent 
variables. The above equation serves to illustrate how the incorporation of 
a mean structure into a model necessarily includes the new parameters α 
and μx, the intercept and observed mean (of x), respectively. Thus, models 
with structured means merely extend the basic concepts associated with 
the analysis of covariance structures.

In summary, any model involving mean structures may include the 
following parameters:

Regression coefficients•	
Variances and covariances of the independent variables•	
Intercepts of the dependent variables•	
Means of the independent variables•	

As a consequence, these models involve the analysis of both covariance 
and mean structures.

Estimation of latent variable means

As with the invariance applications presented in Chapters 7 and 9, this 
application of a structured means model involves testing simultaneously 
across two groups.1 The multigroup model illustrated in this chapter is 
used when one is interested in testing for group differences in the means 
of particular latent constructs. This approach to the estimation of latent 
mean structures was first brought to light in Sörbom’s (1974) seminal 
extension of the classic model of factorial invariance. As such, testing 
for latent mean differences across groups is made possible through the 
implementation of two important strategies—model identification and fac-
tor identification.

Model identification
Given the necessary estimation of intercepts associated with the observed 
variables, in addition to those associated with the unobserved latent 
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constructs, it is evident that the attainment of an overidentified model is pos-
sible only with the imposition of several specification constraints. Indeed, 
it is this very issue that complicates, and ultimately renders impossible, the 
estimation of latent means in single-group analyses. Multigroup analyses, 
on the other hand, provide the mechanism for imposing severe restrictions 
on the model such that the estimation of latent means is possible. More spe-
cifically, because two (or more) groups under study are tested simultane-
ously, evaluation of the identification criterion is considered across groups. 
As a consequence, although the structured means model may not be identi-
fied in one group, it can become so when  analyzed within the framework of 
a multigroup model. This outcome occurs as a function of specified equal-
ity constraints across groups. More specifically, these equality constraints 
derive from the underlying assumption that both the observed variable 
intercepts and the factor loadings are invariant across groups.

Factor identification
This requirement imposes the restriction that the factor intercepts for one 
group be fixed to zero; this group then operates as a reference group against 
which latent means for the other group(s) are compared. The reason for 
this reconceptualization is that when the intercepts of the measured vari-
ables are constrained equal across groups, this leads to the latent factor 
intercepts having no definite origin (i.e., they are undefined in a statistical 
sense). A standard way of fixing the origin, then, is to set the factor inter-
cepts of one group to zero (see Bentler, 2005; Jöreskog & Sörbom, 1996). As 
a consequence, factor intercepts are interpretable only in a relative sense. 
That is to say, one can test whether the latent variable means for one group 
differ from those of another, but one cannot estimate the mean of each fac-
tor in a model for each group. In other words, while it is possible to test for 
latent mean differences between, say, adolescent boys and girls, it is not 
possible to estimate, simultaneously, the mean of each factor for both boys 
and girls; the latent means for one group must be constrained to zero.

Having reviewed the conceptual and statistical underpinning of the 
mean structures model, I now introduce you to the hypothesized model 
under study in this chapter.

The hypothesized model
The application to be examined in this chapter addresses equivalency of 
the latent factor means related to four self-concept (SC) dimensions (gen-
eral, academic, English, and mathematics) for high (n = 582) and low (n = 
248) academically tracked high school students (Byrne, 1988b). The sub-
stantive focus of the initial study (Byrne, 1988b) was to test for latent mean 
differences in multidimensional SCs across these two ability groups. This 
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CFA model followed from an earlier study designed to test for the multidi-
mensionality of SC (Byrne & Shavelson, 1986), as portrayed schematically 
in Figure 8.1.

As you will note in the figure, except for academic SC, the remaining 
dimensions are measured by three indicator variables, each of which rep-
resents a subscale score. Specifically, general SC is measured by subscale 
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Figure 8.1 Hypothesized four-factor model of adolescent self-concept.

RT63727.indb   235 7/6/09   7:26:49 PM



236 Structural equation modeling with AMOS 2nd edition

scores derived from the General SC subscale of the Self Description 
Questionnaire III (SDQIII; Marsh, 1992b), the Affective Perception 
Inventory (API; Soares & Soares, 1979), and the Self-Esteem Scale (SES; 
Rosenberg, 1965); these indicator variables are labeled as SDQGSC, 
APIGSC, and SESGSC, respectively. English SC is measured by subscale 
scores related to the SDQIII (SDQESC), the API (APIESC), and the Self-
Concept of Ability Scale (SCAS; Brookover, 1962); the latter is labeled as 
SCAESC in Figure 8.1. Finally, math SC is measured by subscale scores 
derived from the SDQIII (SDQMSC), the API (APIMSC), and the SCAS 
(SCAMSC). In the case of academic SC, findings from a preliminary factor 
analysis of the API (see Byrne & Shavelson, 1986) revealed several inad-
equacies in its measurement of this SC dimension. Thus, it was deleted 
from all subsequent analyses in the Byrne and Shavelson (1986) study, and 
the same holds true here. Consequently then, Academic SC is measured 
by subscale scores from the SDQIII (SDQASC) and the SCAS (SCAASC).

In contrast to the CFA model discussed in Chapter 7 in which the 
items of a measuring instrument formed the units of measurement, the 
CFA model under study in this chapter entails subscale scores of mea-
suring instruments as its units of measurement. It is hypothesized that 
each subscale measure will have a nonzero loading on the SC factor it is 
designed to measure, albeit a zero loading on all other factors, and that 
error and uniquenesses associated with each of the observed measures 
are uncorrelated. Consistent with theory and empirical research, the four 
SC factors are shown to be intercorrelated.

The baseline models

As with the example of multigroup invariance across independent samples 
in Chapter 7, goodness-of-fit related to the hypothesized model (Figure 8.1) 
was tested separately for high- and low-track students. Model fit statistics 
indicated only a modestly well-fitting model for both groups (high track, 
CFI = .923, RMSEA = .128; low track, CFI = .911, RMSEA = .114). Indeed, a 
review of the modification indices, for both groups, revealed substantial 
evidence of misspecification as a consequence of error covariances among 
subscales of both the API (ESC and MSC) and the SCAS. This finding 
of overlapping variance among the SCAS subscales is certainly not sur-
prising and can be explained by the fact that items on the English and 
Math SC subscales were spawned from those comprising the Academic 
SC subscale. More specifically, the SCAS was originally designed to mea-
sure only Academic SC. However, in their attempt to measure the subject-
specific facets of English and Math SCs, Byrne and Shavelson (1986) used 
the same items from the original SCAS, albeit modifying the content to 
tap into the more specific facets of English and Math SC.
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Given both a substantively and psychometrically reasonable rationale 
for estimating these three additional parameters, the originally hypoth-
esized model was respecified and reestimated accordingly for each group. 
Testing of these respecified models resulted in a substantially better fit-
ting model for both high-track (CFI = .975; RMSEA = .076) and low-track 
(CFI = .974; RMSEA = .065) students. This final baseline model (which 
turns out to be the same for each group) serves as the model to be tested 
for its equivalence across high- and low-track students; it is schematically 
portrayed in Figure 8.2.
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Figure 8.2 Hypothesized multigroup model of adolescent self-concept.
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Modeling with AMOS Graphics
The structured means model

In working with AMOS Graphics, the estimation and testing of structured 
means models are not much different from those of testing for invariance 
based on the analysis of covariance structures. It does, however, require a few 
additional steps. As with the multigroup application presented in Chapter 7, 
the structured means model requires a system of labeling whereby certain 
parameters are constrained to be equal across groups, while others are free to 
take on any value. In testing for differences in factor latent means, for exam-
ple, we would want to know that the measurement model is operating in 
exactly the same way for both high- and low-track students. In the structured 
means models, this requirement includes the observed variable intercepts 
in addition to the factor loadings (i.e., regression weights), and, thus, both 
are constrained equal across both groups. We turn now to a more detailed 
description of this process as it relates to testing for latent mean differences.

Testing for latent mean differences
The hypothesized multigroup model

In testing for latent mean differences using AMOS Graphics, the  baseline 
model for each ability group must be made known to the program. 
However, in the case of our academically tracked groups in this chapter, 
the final model for each was the same. Thus, the multigroup model shown 
in Figure 8.2 represents both groups.2

Steps in the testing process

Once the multigroup model is established, the next step (illustrated in 
Chapter 7) is to identify the name of each group (via the Manage Groups 
dialog box), as well as the location of the related data (via the Data Files 
dialog box). For a review of these procedures, see Chapter 7, and in par-
ticular Figures 7.4 and 7.5. At this point, AMOS has all the information it 
requires with respect to both the model to be tested and the name and 
location of the data to be used. All that is needed now is to determine 
which analytic approach will be used in testing for differences in latent 
factor means across the two groups. In Chapter 7, procedures associated 
with only the selection of approach (manual versus automated) were illus-
trated. Details related to process once this choice has been made were 
necessarily limited to the manual multigroup strategy as it applied to tests 
for invariance. In this chapter, by contrast, I focus on details related to the 
automated multigroup approach.
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Testing for configural invariance
Recall from Chapter 7 that all tests for invariance begin with the config-
ural model for which interest focuses on the extent to which the same 
number of factors best represents the data for both groups. As such, no 
equality constraints are imposed and judgment is based on the adequacy 
of the goodness-of-fit statistics only. In this regard, the configural model 
was found to be exceptionally well fitting in its representation of the 
 multigroup student data (χ2

(70) = 225.298; CFI = .975; RMSEA = .052).
To familiarize you with the AMOS output directory tree in 

 multigroup analyses, I include here both the unstandardized and stan-
dardized factor-loading estimates for the configural model. Figure 8.3 
is pertinent to the high-track group, while Figure 8.4 is pertinent to the 
low-track group. In reviewing both of these figures, I wish to direct your 
attention to four important pieces of information. First, turning to the 
directory tree shown in Figure 8.3, you will note that High Track is high-
lighted, thereby  indicating that all results presented in this output file 
pertain only to this group. In contrast, if you were to click on Low Track, 
results pertinent to that group would be presented. Second, below this 
group identification section of the tree, you will see a list of four mod-
els (one unconstrained and three constrained). As indicated by the cur-
sor, results presented here (and in Figure 8.4) relate to the unconstrained 
model. Third, because there are no constraints specified in this model, the 
parameters are freely estimated and, thus, vary across high- and  low-track 
students. Finally, although equality constraints were not assigned to the 
factor loadings, the program automatically assigned labels that can be 
used to identify both the parameters and the groups in subsequent tests 
for invariance. These labels appear in the last column of the unstandard-
ized estimate related to the regression weights. For example, the label 
assigned to the factor loading of SESGSC on GSC is a1_1 for high-track 
students and a1_2 for low-track students.3

Testing for measurement invariance
Subsequent to the configural model, all tests for invariance require the 
imposition of equality constraints across groups. Implementation of this 
process, using the automated approach, begins with the hypothesized 
model open followed by selection of the Multiple Group Analysis tab from 
the Analysis drop-down menu, as illustrated in Chapter 7 (Figure 7.13). 
Clicking on this selection will present you with the warning shown in 
Box 8.1.

Once you click on the OK tab, you will immediately be presented with 
the Multiple Group Analysis dialog box in which the default parameter sub-
sets are checked (see Figure 7.14). However, as I emphasized in Chapter 7, in 
testing for invariance, I consider it prudent to test first for invariance related 
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to only the factor loadings. In this way, should the results yield evidence of 
noninvariance, you can then conduct follow-up analyses to determine which 
factor-loading parameters are not operating the same way across groups and 
can exclude them from further analyses. Thus, to test for invariance related 
only to the factor loadings, you will need to delete all checkmarks from the 

Figure 8.3 AMOS Graphics: Factor-loading estimates for the high-track group 
based on the unconstrained model.
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Figure 8.4 AMOS Graphics: Factor-loading estimates for the low-track group 
based on the unconstrained model.

BOX 8.1
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Multiple Group Analysis dialog box, except the one in Column 1, which is 
shown in Figure 8.5 to represent only the “measurement weights.”

Once you click on the OK tab of this dialog box, you will then see the 
assignment of constraint labels to your model. As noted in Chapter 7, one 
aberration of the current version of the program (AMOS 17) is that, regardless 
of which default checkmarks are removed from the Multiple Group Analysis 
dialog box (meaning the related parameters will be freely estimated), the 
program nonetheless adds the related labels to the model anyway. Displayed 
in Figure 8.6 is our hypothesized multigroup model with the appropriate fac-
tor-loading estimates labeled (a2_1 – a6_1), in addition to those representing 
the factor variances (vvv1_1 – vvv4_1), factor covariances (ccc1_1 – ccc6_1), 
and error variances (v1_1 – v11_1) as they pertain to Group 1, the high-track 
group. As noted earlier, clicking on the low-track group in the AMOS output 
directory tree would switch you to the same labeled model, albeit pertinent 
to the low-track group. As such, the labeling system uses the number “2” to 
indicate its relevance to this group of students (e.g., a2_2; a3_2).

Goodness-of-fit results from this test of invariant factor loadings 
again provided evidence of a well-fitting model (χ2

(77) = 245.571; CFI = .972; 
RMSEA = .051). Although the difference in χ2 from the configural model 
was statically significant (∆χ2

(7) = 20.273), the difference between the CFI 
values met the recommended cutoff criterion of .01 (∆CFI = .003). Using 
the CFI difference test as the criterion upon which to determine evidence 
of invariance, I concluded the factor loadings to be operating similarly 
across high-track and low-track students.

Figure 8.5 AMOS Graphics: Multiple Group Analysis dialog box with equality con-
straints indicated for only factor loadings.
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Testing for latent mean differences
As noted earlier, in testing for differences in latent factor means, it is nec-
essary to constrain both the factor loadings and the observed variable 
intercepts equal across the groups. However, in contrast to the case for 
factor loadings, which, if found to be noninvariant, are subsequently freely 
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Figure 8.6 Model to be tested for cross-group invariance of the factor loadings.
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estimated, the intercepts must always be held constrained across the groups 
despite evidence of noninvariance. However, Cooke et al. (2001) contended 
that of the two, noninvariant factor loadings are by far the more serious. 
They further argued that group differences in intercepts need not preclude 
the usefulness of these items in measuring their underlying constructs.

Our first step in testing for latent mean differences, then, is to con-
strain the intercepts equal across groups. This task is easily accomplished 
by activating the Analysis Properties dialog box, either by clicking on its 
related icon or by selecting it from the Analysis drop-down menu. Once the 
Analysis Properties dialog box is open, we click on the Estimation tab and 
then select the Estimate Means and Intercepts option, as shown in Figure 8.7.

The next step in the process is to once again select the Multiple Group 
Analysis option from the Analysis drop-down menu. This time, however, 
in addition to placing a checkmark in Column 1 for only the measurement 
weights, we additionally check off Column 2, which incorporates both 

Figure 8.7 AMOS Graphics: Analysis Properties dialog box with means and inter-
cept estimates requested.

RT63727.indb   244 7/6/09   7:27:07 PM



Chapter eight: Testing for the equivalence of latent mean structures 245

the measurement weights and the measurement intercepts. Once these 
choices have been initiated, AMOS automatically assigns a zero followed 
by a comma (0,) to each factor. Figure 8.8 captures this labeling action by 
showing both the options checked in the Multiple Group Analysis dialog 
box, together with the resulting assignment of “0,” to the general SC (GSC) 
and academic SC (ASC) factors.

The fixed zero values shown in Figure 8.8 are assigned to the model 
relevant to each group. However, as discussed at the beginning of this 
chapter, in testing for latent mean differences, one of the groups is freely 
estimated while the other is constrained equal to some fixed amount. In 
the case here, AMOS automatically fixes this zero value for both groups. 

Figure 8.8 AMOS Graphics: Multiple Group dialog box with equality constraints 
indicated for factor loadings and intercepts.

RT63727.indb   245 7/6/09   7:27:08 PM



246 Structural equation modeling with AMOS 2nd edition

Thus, the next step in the process is to remove these fixed factor values 
for one of the groups. The decision of which group will be fixed to zero is 
an arbitrary one and has no bearing on the final estimated mean values; 
regardless of which group is chosen, the results will be identical. In the 
present case, I elected to use the low-track group as the reference group 
(i.e., the latent means were fixed to a value of 0.0) and, thus, moved on to 
removing the mean constraints for the high-track group. With the model 
open, this process begins by first highlighting the factor to be relabeled 
by means of a left click of the mouse and then right-clicking on this factor, 
which will activate the Object Properties tab as shown in Figure 8.9.

Clicking on this tab opens the Object Properties dialog box, after which 
we click on the Parameters tab; this action enables us to relabel the mean 
parameters. Our interest here is in removing the fixed zero value assigned 
to each of the factor means and replacing them with a label that allows 
these parameters to be freely estimated for the high-track group; Figure 8.10 
captures this process. More specifically, when the dialog box was first 
opened, the label seen in the space below “mean” was 0. I subsequently 

Figure 8.9 AMOS Graphics: Clicking on the Object Properties tab to open the dia-
log box.
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replaced this number with an appropriate label (e.g., mn_gsc) that could be 
modified in accordance with its related factor, as can be seen on the model 
behind. Circled within the dialog box, you can see assignment of the label 
to be assigned to the first factor (GSC). Note also that the square beside All 
Groups is empty and remains empty as we do not wish these relabeling 
changes to be applied to both groups.4

The final model to be tested for latent mean differences is shown in 
Figure 8.11 as it relates to the high-track group. However, clicking on the 
low-track label in the directory tree (see Figure 8.12) presents the same 
model, albeit with the zero values assigned to each of the factors. A mini 
version of both models is displayed in Figure 8.12.

Selected AMOS output: Model summary

Of primary interest in analyses related to structured means models are 
(a) the latent mean estimates, and (b) the goodness-of-fit between the 

Figure 8.10 AMOS Graphics: Object Properties dialog box showing modification of 
the means-labeling protocol.
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hypothesized model and the multigroup data. Before turning to these 
results for our analysis of high- and low-track students, let’s once again 
take a few minutes to review a summary of the model in terms of the 
number of estimated parameters and resulting degrees of freedom. This 
summary is presented in Figure 8.13.

As you know by now, in order to calculate the degrees of freedom 
 associated with the test of a model, you need to know two pieces of 
information: (a) the number of sample moments, and (b) the number of 
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Figure 8.11 Structured means model as it represents the high-track group.
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estimated parameters. In Figure 8.13, we see that there are 154 distinct 
sample moments and 70 estimated parameters. Let’s turn first to the num-
ber of sample moments. If you had calculated the number of moments in 
the same manner used with all other applications in this book, you would 
arrive at the number 132 ([11 × 12) / 2] = 66; given two groups, the total is 
132). Why this discrepancy? The answer lies in the analysis of covariance 
versus means structures. All applications prior to the present chapter were 

Figure 8.12 AMOS Graphics: Micro view of structured means model for high-
track and low-track groups.

Figure 8.13 AMOS Graphics: Summary information related to structured means 
model.
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based on covariance structures, and, thus, the only pieces of information 
needed for the analyses were the covariances among the observed variables. 
However, in the analysis of structured means models, information related 
to both the covariance matrix and the sample means is required. With 11 
observed variables in the model, there will be 11 means, and 22 means for 
the two groups. The resulting number of moments, then, is 132 + 22 = 154.

Turning next to the reported 70 estimated parameters, let’s look first 
at the number of parameters being estimated for the high-track group. 
As such, we have 7 factor loadings, 9 covariances (6 factor covariances; 3 
error covariances), 15 variances (11 error variances; 4 factor variances), 11 
intercepts, and 4 latent means, thereby yielding a total of 46 parameters 
to be estimated. For the low-track group, on the other hand, we have only 
9 covariances and 15 variances, resulting in a total of 24 parameters to be 
estimated; all other parameters have been constrained equal to those of 
the high-track group. Across the two groups, then, there are 70 (46 + 24) 
parameters to be estimated. With 154 sample moments and 70 estimated 
parameters, the number of degrees of freedom will be 84.5

Selected AMOS output: Goodness-of-fit statistics

To provide you with a basis of comparison between the structured means 
model (Model 2 in the output) and both the configural model (i.e., uncon-
strained model) and measurement model in which only the factor loadings 
were group invariant (Model 1 in the output), goodness-of-fit statistics related 
to each are reported in Table 8.1. In each case, the fit statistics indicated well-
fitting models. As reported earlier, although comparisons of Model 1 and 2 
with the unconstrained model result in χ2 difference tests that were statisti-
cally significant (p < .01 and p < .001, respectively), the CFI difference tests 
met the cutoff criteria of < .01 (with rounding in the case of Model 2). Indeed, 
despite the equality constraints imposed on both the factor loadings and the 
observed variable intercepts across the two groups, the structured means 
model fitted the data exceptionally well (e.g., CFI = .963) and demonstrated 
an adequate approximation to the two adolescent ability track populations 
(RMSEA = .057). Given these findings, then, we can feel confident in inter-
preting the estimates associated with the current solution.

Selected AMOS output: Parameter estimates

High-track students
We turn first to parameter estimates for the high-track students, which are 
reported in Table 8.2. In the interest of space, factor and error variances 
are not included. A brief perusal of the critical ratios (C.R.s) associated 
with these estimates reveals all, except the covariance between the factors 
ESC and MSC, to be statistically significant. This nonsignificant finding, 
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however, is quite consistent with self-concept theory as it relates to these 
two academic dimensions and therefore is no cause for concern.

Of major interest here are the latent mean estimates reported for 
high-track students as they provide the key to the question of whether the 
latent factor means for this group are significantly different from those for 
low-track students. Given that the low-track group was designated as the 
reference group and thus their factor means were fixed to zero, the values 
reported here represent latent mean differences between the two groups. 
Reviewing these values, we see that whereas the latent factor means 
related to the more specific facets of academic, English, and mathematics 
self-concepts were statistically significant (as indicated by the critical ratio 
values > 1.96), this was not the case for general self-concept (C.R. = .304).

Given that the latent mean parameters were estimated for the high-track 
group, and that they represent positive values, we interpret these findings 
as indicating that high-track students in secondary school appear to have 

Table 8.1 Goodness-of-Fit Statistics for Configural and Measurement Models

Model NPAR CMIN DF P CMIN/DF

Unconstrained 62 225.298 70 .000 3.219
Model 1 55 245.571 77 .000 3.189
Model 2 70 309.456 84 .000 3.684
Model 3 62 225.298 70 .000 3.219
Saturated model 132 .000 0
Independence model 22 6213.470 110 .000 56.486

Baseline comparisons

NFI RFI IFI TLI
Model Delta1 rho1 Delta2 rho2 CFI

Unconstrained .964 .943 .975 .960 .975
Model 1 .960 .944 .973 .961 .972
Model 2 .950 .935 .963 .952 .963
Model 3 .964 .943 .975 .960 .975
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA
Model RMSEA LO 90 HI 90 PCLOSE

Unconstrained .052 .044 .059 .338
Model 1 .051 .044 .059 .361
Model 2 .057 .050 .064 .045
Model 3 .052 .044 .059 .338
Independence model .259 .253 .264 .000
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Table 8.2 Selected AMOS Output: Parameter Estimates for  
Means Structures Model—High-Track Students

Estimate S.E. C.R. P Label

Regression weights

SESGSC <--- GSC .356 .012 30.458 *** a1_1
APIGSC <--- GSC .535 .022 24.124 *** a2_1
SDQGSC <--- GSC 1.000
SCAASC <--- ASC .445 .018 25.030 *** a3_1
SDQASC <--- ASC 1.000
SCAESC <--- ESC .587 .026 22.252 *** a4_1
APIESC <--- ESC 1.307 .054 24.158 *** a5_1
SDQESC <--- ESC 1.000
SCAMSC <--- MSC .428 .010 41.502 *** a6_1
APIMSC <--- MSC .698 .014 49.706 *** a7_1
SDQMSC <--- MSC 1.000
*** probability < .000

Standardized regression weights

SESGSC <--- GSC .913
APIGSC <--- GSC .738
SDQGSC <--- GSC .888
SCAASC <--- ASC .826
SDQASC <--- ASC .784
SCAESC <--- ESC .769
APIESC <--- ESC .913
SDQESC <--- ESC .781
SCAMSC <--- MSC .876
APIMSC <--- MSC .943
SDQMSC <--- MSC .947

Means

GSC .296 .978 .302 .762 mn_gsc
ASC 10.397 .781 13.315 *** mn_asc
ESC 3.424 .571 6.001 *** mn_esc
MSC 7.639 1.062 7.193 *** mn_msc

*** probability < .000

Intercepts

SESGSC 31.317 .291 107.449 *** i1_1
APIGSC 76.653 .474 161.804 *** i2_1
SDQGSC 75.638 .813 93.086 *** i3_1

(continued)
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significantly higher perceptions of self than their low-track peers with respect 
to perceived mathematics and English capabilities, as well as to school in 
general. On the other hand, when it comes to a global perception of self, there 
appears to be little difference between the two groups of students. Readers 
interested in a more detailed discussion of these results from a substantive 
perspective are referred to the original article (Byrne, 1988b).

Table 8.2 Selected AMOS Output: Parameter Estimates for  
Means Structures Model—High-Track Students (Continued)

Estimate S.E. C.R. P Label

Intercepts
SCAASC 25.424 .283 89.745 *** i4_1
SDQASC 47.894 .675 70.991 *** i5_1
SCAESC 26.459 .289 91.679 *** i6_1
APIESC 57.401 .606 94.746 *** i7_1
SDQESC 54.382 .492 110.595 *** i8_1
SCAMSC 22.958 .364 63.034 *** i9_1
APIMSC 41.851 .585 71.518 *** i10_1
SDQMSC 41.444 .829 49.979 *** i11_1
*** probability < .000

Covariances

ASC <--> ESC 37.423 4.020 9.309 *** ccc1_1
GSC <--> ESC 23.971 4.773 5.022 *** ccc2_1
ASC <--> MSC 90.511 8.140 11.119 *** ccc3_1
GSC <--> MSC 54.373 9.556 5.690 *** ccc4_1
GSC <--> ASC 53.028 6.246 8.490 *** ccc5_1
ESC <--> MSC .359 5.556 .065 .948 ccc6_1
err5 <--> err8 5.159 .588 8.773 *** c1_1
err5 <--> err11 4.546 .554 8.201 *** c2_1
err7 <--> err10 8.590 1.406 6.111 *** c3_1
*** probability < .000

Correlations

ASC <--> ESC .537
GSC <--> ESC .240
ASC <--> MSC .628
GSC <--> MSC .263
GSC <--> ASC .453
ESC <--> MSC .003
err5 <--> err8 .499
err5 <--> err11 .439
err7 <--> err10 .487
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Low-track students
Turning now to the results for low-track students reported in Table 8.3, 
we find that, consistent with the high-track group, all parameter esti-
mates are statistically significant except for the factor covariance 
between English and Math SC. Upon further scrutiny, however, you 
may think that something is amiss with this table as both the factor 
loadings (i.e., regression weights) and the observed variable intercepts, 
as well as their related labels, are identical to those reported for the 
high-track group. These results are correct, of course, as these parame-
ters (for the low-track group) were constrained equal to those estimated 

Table 8.3 Selected AMOS Output: Parameter Estimates for  
Means Structure Model—Low-Track Students

Regression weights

Estimate S.E. C.R. P Label

SESGSC <--- GSC .356 .012 30.458 *** a1_1
APIGSC <--- GSC .535 .022 24.124 *** a2_1
SDQGSC <--- GSC 1.000
SCAASC <--- ASC .445 .018 25.030 *** a3_1
SDQASC <--- ASC 1.000
SCAESC <--- ESC .587 .026 22.252 *** a4_1
APIESC <--- ESC 1.307 .054 24.158 *** a5_1
SDQESC <--- ESC 1.000
SCAMSC <--- MSC .428 .010 41.502 *** a6_1
APIMSC <--- MSC .698 .014 49.706 *** a7_1
SDQMSC <--- MSC 1.000
***

Standardized regression weights

SESGSC <--- GSC .854
APIGSC <--- GSC .698
SDQGSC <--- GSC .880
SCAASC <--- ASC .767
SDQASC <--- ASC .694
SCAESC <--- ESC .692
APIESC <--- ESC .785
SDQESC <--- ESC .684
SCAMSC <--- MSC .851
APIMSC <--- MSC .849
SDQMSC <--- MSC .892

(continued)
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for the high-track group. Finally, it is important to note that no esti-
mates for the factor means are reported. Although these values were 
constrained to zero, AMOS does not report these fixed values in the 
output.

Table 8.3 Selected AMOS Output: Parameter Estimates for  
Means Structure Model—Low-Track Students (Continued)

Estimate S.E. C.R. P Label

Intercepts

SESGSC 31.317 .291 107.449 *** i1_1
APIGSC 76.653 .474 161.804 *** i2_1
SDQGSC 75.638 .813 93.086 *** i3_1
SCAASC 25.424 .283 89.745 *** i4_1
SDQASC 47.894 .675 70.991 *** i5_1
SCAESC 26.459 .289 91.679 *** i6_1
APIESC 57.401 .606 94.746 *** i7_1
SDQESC 54.382 .492 110.595 *** i8_1
SCAMSC 22.958 .364 63.034 *** i9_1
APIMSC 41.851 .585 71.518 *** i10_1
SDQMSC 41.444 .829 49.979 *** i11_1
***

Covariances

ASC <--> ESC 31.828 5.002 6.363 *** ccc1_2
GSC <--> ESC 23.400 5.860 3.993 *** ccc2_2
MSC <--> ASC 49.353 8.598 5.740 *** ccc3_2
MSC <--> GSC 49.941 10.717 4.660 *** ccc4_2
GSC <--> ASC 41.082 8.136 5.050 *** ccc5_2
MSC <--> ESC 3.018 5.764 .524 .601 ccc6_2
err5 <--> err8 5.051 1.050 4.808 *** c1_2
err5 <--> err11 3.882 .863 4.499 *** c2_2
err7 <--> err10 17.425 3.273 5.323 *** c3_2
***

Correlations

ASC <--> ESC .620
GSC <--> ESC .317
MSC <--> ASC .496
MSC <--> GSC .349
GSC <--> ASC .428
MSC <--> ESC .040
Err5 <--> err8 .432
Err5 <--> err11 .396
Err7 <--> err10 .510
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Endnotes
 1. Of course, the procedure can also include more than two groups.
 2. For an example of testing a multigroup model that involves two different 

baseline models, readers are referred to Byrne (2004).
 3. Selection of which group serves as “Group 1” is purely arbitrary.
 4. Although it was necessary to check this box when using the manual approach 

to invariance (see Chapter 7), this is not needed when the automated multi-
group approach is used as AMOS programs these constraints automatically.

 5. It is important to note a serious error in the Parameter Summary table for this 
model (not shown here), as it relates to the low-track group, in the current 
version of the program (AMOS 17). Turning first to the Means column, the 
correct values should report four fixed means, thus yielding a total of four 
means. Switching to a horizontal view of the Parameter Summary table, the 
Fixed row should show a total of 19 parameters, and the Total row, a grand 
total of 61 parameters. Calculation of these values will be corrected in Version 
18 (J. L. Arbuckle, personal communication, December 10, 2008).
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ninechapter 

Testing for the equivalence 
of a causal structure
In Chapter 4, I highlighted several problematic aspects of post hoc model 
fitting in structural equation modeling. One approach to addressing prob-
lems associated with post hoc model fitting is to apply some mode of cross-
validation analysis; this is the focus of the present chapter. In this chapter, 
we examine a full structural equation model and test for its equivalence 
across calibration and validation samples of secondary school teachers. 
Before walking you through this procedure, however, let’s first review 
some of the issues related to cross-validation.

Cross-validation in covariance structure modeling
Typically, in applications of covariance structure modeling, the researcher 
tests a hypothesized model and then, from an assessment of various 
goodness-of-fit criteria, concludes that a statistically better fitting model 
could be attained by respecifying the model such that particular param-
eters previously constrained to zero are freely estimated (Breckler, 1990; 
MacCallum, Roznowski, Mar, & Reith, 1994; MacCallum, Roznowski, & 
Necowitz, 1992; MacCallum, Wegener, Uchino, & Fabrigar, 1993). Possibly 
as a consequence of considerable criticism of covariance structure model-
ing procedures during the 1980s and early 1990s (e.g., Biddle & Marlin, 
1987; Breckler; Cliff, 1983), most researchers engaged in this respecifica-
tion process are now generally familiar with the issues. In particular, they 
are cognizant of the exploratory nature of these follow-up procedures, as 
well as the fact that additionally specified parameters in the model must 
be theoretically substantiated.

The pros and cons of post hoc model fitting have been rigorously 
debated in the literature. Although some have severely criticized the prac-
tice (e.g., Cliff, 1983; Cudeck & Browne, 1983), others have argued that as long 
as the researcher is fully cognizant of the exploratory nature of his or her 
analyses, the process can be substantively meaningful because practical as 
well as statistical significance can be taken into account (Byrne, Shavelson, 
& Muthén, 1989; Tanaka & Huba, 1984). However, Jöreskog (1993) has been 
very clear in stating, “If the model is rejected by the data, the problem is 
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to determine what is wrong with the model and how the model should be 
modified to fit the data better” (p. 298). The purists would argue that once 
a hypothesized model is rejected, that’s the end of the story. More realisti-
cally, however, other researchers in this area of study recognize the obvious 
impracticality in the termination of all subsequent model analyses. Clearly, 
in the interest of future research, it behooves the investigator to probe 
deeper into the question of why the model is malfitting (see Tanaka, 1993). 
As a consequence of the concerted efforts of statistical experts in covariance 
structure modeling in addressing this issue, there are now several different 
approaches that can be used to increase the soundness of findings derived 
from these post hoc analyses.

Undoubtedly, post hoc model fitting in the analysis of covariance 
structures is problematic. With multiple model specifications, there is the 
risk of capitalization on chance factors because model modification may be 
driven by characteristics of the particular sample on which the model was 
tested (e.g., sample size, sample heterogeneity) (MacCallum et al., 1992). 
As a consequence of this sequential testing procedure, there is increased 
risk of making either a Type I or Type II error, and at this point in time, 
there is no direct way to adjust for the probability of such error. Because 
hypothesized covariance structure models represent only approxima-
tions of reality and, thus, are not expected to fit real-world phenomena 
exactly (Cudeck & Browne, 1983; MacCallum et al., 1992), most research 
applications are likely to require the specification of alternative models 
in the quest for one that fits the data well (Anderson & Gerbing, 1988; 
MacCallum, 1986). Indeed, this aspect of covariance structure modeling 
represents a serious limitation, and, to date, several alternative strategies 
for model testing have been proposed (see, e.g., Anderson & Gerbing, 1988; 
Cudeck & Henly, 1991; MacCallum, 1995; MacCallum et al., 1992, 1993).

One approach to addressing problems associated with post hoc model 
fitting is to employ a cross-validation strategy whereby the final model 
derived from the post hoc analyses is tested on a second (or more) inde-
pendent sample(s) from the same population. Barring the availability of 
separate data samples, albeit a sufficiently large sample, one may wish to 
randomly split the data into two (or more) parts, thereby making it pos-
sible to cross-validate the findings (see Cudeck & Browne, 1983). As such, 
Sample A serves as the calibration sample on which the initially hypoth-
esized model is tested, as well as any post hoc analyses conducted in the 
process of attaining a well-fitting model. Once this final model is deter-
mined, the validity of its structure can then be tested based on Sample B 
(the validation sample). In other words, the final best-fitting model for the 
calibration sample becomes the hypothesized model under test for the 
validation sample.
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There are several ways by which the similarity of model structure can be 
tested (see, e.g., Anderson & Gerbing, 1988; Browne & Cudeck, 1989; Cudeck 
& Browne, 1983; MacCallum et al., 1994; Whittaker & Stapleton, 2006). For 
one example, Cudeck and Browne suggested the computation of a Cross-
Validation Index (CVI) which measures the distance between the restricted 
(i.e., model-imposed) variance–covariance matrix for the calibration sample 
and the unrestricted variance–covariance matrix for the validation sample. 
Because the estimated predictive validity of the model is gauged by the 
smallness of the CVI value, evaluation is facilitated by their comparison 
based on a series of alternative models. It is important to note, however, that 
the CVI estimate reflects overall discrepancy between “the actual popula-
tion covariance matrix, Σ, and the estimated population covariance matrix 
reconstructed from the parameter estimates obtained from fitting the model 
to the sample” (MacCallum et al., 1994, p. 4). More specifically, this global 
index of discrepancy represents combined effects arising from the discrep-
ancy of approximation (e.g., nonlinear influences among variables) and the 
discrepancy of estimation (e.g., representative sample; sample size). (For a 
more extended discussion of these aspects of discrepancy, see Browne & 
Cudeck, 1989; Cudeck & Henly, 1991; MacCallum et al., 1994.)

More recently, Whittaker and Stapleton (2006), in a comprehensive 
Monte Carlo simulation study of eight cross-validation indices, deter-
mined that certain conditions played an important part in affecting their 
performance. Specifically, findings showed that whereas the performance 
of these indices generally improved with increasing factor loading and 
sample sizes, it tended to be less optimal in the presence of increasing non-
normality. (For details related to these findings, as well as the eight cross-
validation indices included in this study, see Whittaker & Stapleton.)

In the present chapter, we examine another approach to cross-
 validation. Specifically, we use an invariance-testing strategy to test for 
the replicability of a full structural equation model across groups. The 
selected application is straightforward in addressing the question of 
whether a model that has been respecified in one sample replicates over 
a second independent sample from the same population (for another 
approach, see Byrne & Baron, 1994).

Testing for invariance across calibration 
and validation samples
The example presented in this chapter comes from the same study briefly 
described in Chapter 6 (Byrne, 1994a), the intent of which was threefold: (a) 
to validate a causal structure involving the impact of organizational and 
personality factors on three facets of burnout for elementary, intermediate, 
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and secondary teachers; (b) to cross-validate this model across a second inde-
pendent sample within each teaching panel; and (c) to test for the invariance 
of common structural regression (or causal) paths across teaching panels. 
In contrast to Chapter 6, however, here we focus on (b) in testing for model 
replication across calibration and validation samples of secondary teachers. 
(For an in-depth examination of invariance-testing procedures within and 
between the three teacher groups, see Byrne, 1994a.)

It is perhaps important to note that although the present example of 
cross-validation is based on a full structural equation model, the practice is 
in no way limited to such applications. Indeed, cross-validation is equally as 
important for CFA models, and examples of such applications can be found 
across a variety of disciplines; for those relevant to psychology, see Byrne 
(1993, 1994b); Byrne and Baron (1994); Byrne, Baron, and Balev (1996, 1998); 
Byrne, Baron, and Campbell (1993, 1994); Byrne, Baron, Larsson, and Melin 
(1995); Byrne, Baron, Melin, and Larsson (1996); Byrne and Campbell (1999); 
and Byrne, Stewart, and Lee (2004). For those relevant to education, see 
Benson and Bandalos (1992) and Pomplun and Omar (2003). And for those 
relevant to medicine, see Francis, Fletcher, and Rourke (1988), as well as 
Wang, Wang, and Hoadley (2007). We turn now to the model under study.

The original study from which the present example is taken comprised 
a sample of 1,431 high school teachers. For purposes of cross-validation, this 
sample was randomly split into two; Sample A (n = 716) was used as the cal-
ibration group, and Sample B (n = 715) as the validation group. Preliminary 
analyses conducted for the original study determined two outlying cases 
which were deleted from all subsequent analyses, thereby rendering final 
sample sizes of 715 (Sample A) and 714 (Sample B).

The hypothesized model

The originally hypothesized model was tested and modified based on data 
from the calibration sample (Sample A) of high school teachers. The final 
best-fitting model for this sample is shown schematically in Figure 9.1. It 
is important to note that, for purposes of clarity, double-headed arrows 
representing correlations among the independent factors in the model 
and measurement error terms associated with each of the indicator vari-
ables are not included in this figure. Nonetheless, these specifications are 
essential to the model and must be added before being able to test the 
model; otherwise, AMOS will present you with the error message shown 
in Figure 9.2. Thus, in testing structural equation models using the AMOS 
program, I suggest that you keep two sets of matching model files—one 
in which you have a cleanly presented figure appropriate for publication 
purposes, and the other as a working file in which it doesn’t matter how 
cluttered the figure might be (see, e.g., Figure 9.5).
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Establishing a baseline model

Because analysis of the hypothesized model in the original study was based 
on the EQS program (Bentler, 2005), for which the modification indices are 
derived multivariately rather than univariately (as in AMOS), I consider 
it important to test for its validity in establishing a baseline model here 
prior to conducting tests for its invariance across the calibration and vali-
dation samples. Initial testing of this model (see Figure 9.1) for the calibra-
tion sample yielded the goodness-of-fit statistics reported in Table 9.1. As 
indicated by a CFI value of .939 (RMSEA = .050), the postulated model of 
causal structure seems to fit these data well. Nonetheless, a review of both 
the modification indices and parameter estimates raises two concerns, 
which I believe need to be addressed. We turn first to the modification 
indices reported in Table 9.2, which represent only the structural paths of 
the model. Here you will quickly notice a large value of 43.899 indicative 
of an omitted path flowing from Self-Esteem to Emotional Exhaustion. As 
indicated by the Parameter Change Statistic, addition of this parameter to 
the model would yield an estimated value of –.568, which is substantial. 
The negative sign, of course, is substantively appropriate in that low levels 

Figure 9.2 AMOS Graphics: Error message advising of need for double-headed 
arrows indicating correlation among independent factors in the model.
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of self-esteem are likely to precipitate high levels of emotional exhaus-
tion and vice versa. In light of both the statistical results and the substan-
tive meaningfulness of this structural regression path, I consider that this 
parameter should be included in the model, and the model reestimated.

Before taking a look at the parameter estimates, however, it is impor-
tant that I make mention of the other large modification index (42.129), 
representing the same path noted above, albeit in reverse (from Emotional 
Exhaustion to Self-Esteem). Given the similar magnitude (relatively speak-
ing) of these two indices, I’m certain that many readers will query why 
this parameter also is not considered for inclusion in the model. In this 
regard, I argue against its inclusion in the model for both statistical and 

Table 9.1 Selected AMOS Output: Goodness-of-Fit Statistics for Hypothesized

Causal structure

Model NPAR CMIN DF P CMIN/DF

Default model 79 910.697 327 .000 2.785
Saturated model 406 .000 0
Independence model 28 9973.176 378 .000 26.384

Baseline comparisons

NFI RFI IFI TLI

CFIModel Delta1 rho1 Delta2 rho2

Default model .909 .894 .939 .930 .939
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Default model .050 .046 .054 .493
Independence model .189 .185 .192 .000

Table 9.2 Selected AMOS Output: Modification Indices 
for Structural Paths

Regression weights 
(calibration—default model) M.I. Par change

SE <--- WO 7.286 –.067
SE <--- EE 42.129 –.094
EE <--- SE 43.899 –.568
DP <--- SE 9.205 –.218
PA <--- PS 9.074 .099
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substantive reasons. From a statistical perspective, I point to the related 
Parameter Change Statistic, which shows a negligible value of –.094, 
clearly indicative of its ineffectiveness as a parameter in the model. From 
a substantive perspective we need to remember the primary focus of the 
original study, which was to identify determinants of teacher burnout. 
Within this framework, specification of a path flowing from Emotional 
Exhaustion to Self-Esteem would be inappropriate as the direction of pre-
diction (in this case) runs counter to the intent of the study.

Let’s turn now to Table 9.3 in which estimates of the factor correla-
tions are presented. Circled, you will observe an estimated value of .886 
representing the correlation between Role Conflict and Work Overload, 
thereby indicating an overlap in variance of approximately 78%. Recall 
that we noted the same problematic correlation with respect to analyses 
for elementary teachers (see Chapter 6). As explained in Chapter 6, Role 
Conflict and Work Overload represent two subscales of the same mea-
suring instrument (Teacher Stress Scale). Thus, it seems evident that the 
related item content is less than optimal in its measurement of behavioral 
characteristics that distinguish between these two factors.

Taking into account the large modification index representing a path 
from Self-Esteem to Emotional Exhaustion, together with the high cor-
relation between the factors of Role Conflict and Work Overload and the 
similarity of results for elementary teachers, I consider it appropriate to 
respecify the hypothesized model such that it includes the new  structural 
path ( Self-Esteem ® Emotional Exhaustion) and the deletion of the Work 
Overload factor, thereby enabling its two indicators to load on the Role 
Conflict factor. This modified model is presented in Figure 9.3, with the addi-
tional regression path and reoriented indicators of Role Conflict encircled.

Table 9.3 Selected AMOS Output: Estimates for 
Factor Correlations

Estimate

DM <--> CC .387
DM <--> PS .662
PS <--> CC .216
RC <--> DM –.746
RC <--> PS –.406
RC <--> CC –.284
CC <--> WO –.205
DM <--> WO –.682
RC <--> WO .886
PS <--> WO –.395
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Results from the testing of this respecified model revealed an  estimated 
value of –.719 (SE = .093; CR = –7.747) for the path from Self-Esteem to 
Emotional Exhaustion, which was somewhat higher than the expected 
value of –.568. Goodness-of-fit statistics results are reported in Table 9.4. 
Although the CFI value of .942 (RMSEA = .049) represents only a slight 
improvement in model fit over the initial CFI value of .939, it nonethe-
less represents a good fit to the data. Thus, the model shown in Figure 9.3 
serves as the baseline model of causal structure that will now be tested for 
its invariance across calibration and validation samples.

Modeling with AMOS Graphics
Testing for the invariance of causal structure 
using the automated approach

In Chapter 7, I outlined the general approach to tests for invariance and 
introduced you to the specification procedures pertinent to both the manual 
and automated approaches available in the AMOS program. Whereas the 
application presented in Chapter 7 focused on the manual approach, the one 
illustrated in Chapter 8 centered on the automated approach. In this chap-
ter, analyses again are based on the multiple-group automated procedure.

Table 9.4 Selected AMOS Output: Goodness-of-Fit Statistics for Revised

Causal structure

Model NPAR CMIN DF P CMIN/DF

Default model 76 884.384 330 .000 2.680
Saturated model 406 .000 0
Independence model 28 9973.176 378 .000 26.384

Baseline comparisons

NFI RFI IFI TLI

Model Delta1 rho1 Delta2 rho2 CFI
Default model .911 .898 .943 .934 .942
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Default model .049 .045 .052 .733
Independence model .189 .185 .192 .000
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Recall that in Chapter 7, we tested separately for the validity of the 
multigroup configural model, followed by tests for invariance related 
separately to each of the measurement and structural models. As noted 
in Chapter 7 and illustrated in Chapter 8, these tests can be tested simul-
taneously using the AMOS automated procedure. In the present chapter, 
we expand on this model-testing process by including both the structural 
residuals (i.e., error residual variances associated with the dependent 
factors in the model) and the measurement residuals (i.e., error variances 
associated with the observed variables). A review of the Multiple Group 
Analysis dialog box, shown in Figure 9.4, summarizes the parameters 
involved in testing for the invariance of these five models. As indicated 
by the gradual addition of constraints, these models are cumulative in 
the sense that each is more restrictive than its predecessor.

Although I noted in Chapter 7 that inclusion of these structural and 
measurement residuals in tests for invariance is somewhat rare and com-
monly considered to be excessively stringent, I include them here for two 
reasons. First, working with this set of five models provides an excellent 
vehicle for showing you how the automated approach to invariance works; 
and, second, it allows me to reinforce on you the importance of establish-
ing invariance one step at a time (i.e., one set of constrained parameters 
at a time). Recall my previous notation that, regardless of which model(s) 
in which a researcher might be interested, AMOS automatically labels all 
parameters in the model. For example, although you may wish to  activate 
only the measurement weight model (Model 1), the program will still label 

Figure 9.4 AMOS Graphics: Multiple Group Analysis dialog box showing default 
models to be tested for invariance.
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all parameters in the model, and not just the factor loadings. Figure 9.5, 
which represents the behind-the-scenes working multigroup model under 
test for invariance, provides a good example of this all-inclusive labeling 
action.

Turning next to Figure 9.6, we find the summary of parameters associ-
ated with the cumulative series of tests for these five models showing the 
breakdown pertinent to each model tested. In essence, the categorization 
of parameters presented in the summary is specific to Model 5. Let’s now 
dissect this summary in order that you have a clear understanding of what 
each of these numbers represents and how each was derived; recall that a 
parameter categorized as labeled represents one that is constrained equal 
across groups. A breakdown of this parameter summary is as follows:

Fixed weights (42): regression paths fixed to a value of 1.0 for 28 mea-•	
surement error terms, 5 structural residuals, and 9 factor loadings
Labeled weights (33): 19 factor loadings and 14 structural paths•	

Figure 9.5 AMOS Graphics: Working behind-the-scenes model showing default 
labeling.
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Labeled covariances (6): 6 factor covariances associated with the •	
4 factors
Labeled variances (37): 4 (independent) factor variances, 5 residual •	
variances, and 28 error variances

Selected AMOS output: Goodness-of-fit statistics 
for comparative tests of multigroup invariance

Of primary interest in testing for multigroup invariance are the goodness-
of-fit statistics but, most importantly, the χ2 and CFI values as they enable 
us to determine the extent to which the parameters tested are operating 
equivalently across the groups. When several tests are conducted simulta-
neously, AMOS computes and reports these results as a set, which makes it 
easy to compare one model with another. Results for the χ2 and CFI values 
related to the series of five models shown in Figure 9.4 are presented in 
Table 9.5. In light of the increasing number of multigroup studies of late 
reporting evidence of invariance based on CFI difference (∆CFI) values 
versus the more traditional χ2 difference (∆χ2) values, as noted in Chapter 7, 
I consider it instructive to present both sets of results here; each is reviewed 
separately.

The traditional χ2 difference approach

We turn first to findings based on the χ2 values as presented in Table 9.5. 
As can be expected, the first model in the group reported in the AMOS 
output is the configural model for which all parameters are estimated for 
the calibration and validation groups simultaneously; that is, no parame-
ters are constrained equal across groups. This multigroup model yielded 

Figure 9.6 AMOS Graphics: Output summary of parameter status related to tests 
for invariance based on Model 5.
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a χ2 value of 1671.998 with 660 degrees of freedom and serves as the base-
line referent against which all subsequent models are compared. In the 
second model tested (measurement weights), all factor loadings of the 
indicator variables were constrained equal across groups. Analyses here 
reveal a χ2 value of 1703.631 with 679 degrees of freedom. Computation 
of the ∆χ2 value between this model and the configural model yields a 
difference of 31.633 with 19 degrees of freedom (because the 19 factor 
loadings for the validation group were constrained equal to those of the 
calibration group). This χ2 difference value is statistically significant at a 
probability of less than .05. Based on these results, we conclude that one 
or more of the factor loadings is not operating equivalently across the 
two groups. Likewise, ∆χ2 values related to each of the increasingly more 
restrictive models that follow show a steady augmentation of this differ-
ential. Overall, then, if we use the traditional invariance-testing approach 
based on the χ2 difference test as the basis for determining evidence of 
equivalence, we would conclude that the full structural equation model 
shown in Figure 9.3 is completely nonequivalent across the calibration 
and validation groups.

In Table 9.5, I presented findings related to the five models check-
marked by default in AMOS 17 primarily for the educative purpose of 

Table 9.5 Selected AMOS Output: Model Comparisons of χ2 and CFI Values

Model CMIN DF P

Unconstrained 1671.998 660 .000
Measurement weights 1703.631 679 .000
Structural weights 1719.187 693 .000
Structural covariances 1730.585 703 .000
Structural residuals 1740.239 708 .000
Measurement residuals 1773.792 736 .000

Baseline comparisons

Model
NFI

Delta1
RFI
rho1

IFI
Delta2

TLI
rho2 CFI

Unconstrained .913 .900 .946 .937 .945
Measurement weights .911 .901 .945 .938 .945
Structural weights .911 .903 .945 .939 .945
Structural covariances .910 .903 .945 .940 .944
Structural residuals .910 .903 .944 .940 .944
Measurement residuals .908 .905 .944 .942 .944
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showing you how this automated process works. Importantly, however, 
provided with evidence that the factor loadings (see Model 1 in Figure 9.4) 
are not equivalent across the two groups (∆χ2

(19) = p < .05), the next step, in 
practice, is to determine which factor loadings are contributing to these 
noninvariant findings. As such, you then need to conduct these steps 
in sequence using the labeling technique and procedure illustrated in 
Chapter 7. The model resulting from this series of tests (the one in which 
all estimated factor loadings are group-equivalent) then becomes the 
measurement model used in testing for Model 2. If results from the test-
ing of Model 2 (all structural regression paths constrained equal across 
groups) are found also to yield evidence of noninvariance, the next task is 
to identify the paths contributing to these findings, and so the same pro-
cess applied in the case of the factor loadings is once again implemented 
here for Model 2. Likewise, once a final model is established at this stage 
(one in which all factor loadings and structural regression paths are mul-
tigroup equivalent), the process is repeated for each subsequent model to 
be tested.

The practical CFI difference approach

We turn now to the alternative approach based on ∆CFI results. If we were 
to base our decision making regarding equivalence of the postulated pat-
tern of causal structure on the more practical approach of the difference 
in CFI values (see Cheung & Rensvold, 2002; Chapter 7, this volume), we 
would draw a starkly different conclusion—that, indeed, the model is 
completely and totally invariant across the two groups. This conclusion, 
of course, is based on the fact that the ∆CFI never exceeded a value of .001. 
In summary, this conclusion advises that all factor loadings, structural 
paths, factor covariances, factor residual variances, and measurement 
error variances are operating equivalently across calibration and valida-
tion samples.

That researchers seeking evidence of multigroup equivalence related 
to assessment instruments, theoretical structures, and/or patterns of 
causal relations can be confronted with such diametrically opposed con-
clusions based solely on the statistical approach used in determining this 
information is extremely disconcerting to say the least. Indeed, it is to 
be hoped that statisticians engaged in Monte Carlo simulation research 
related to structural equation modeling will develop more efficient and 
useful alternative approaches to this decision-making process in the near 
future. Until such time, however, we must either choose the approach 
which we believe is most appropriate for the data under study, or report 
results related to both.
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Testing for construct validity
The multitrait-multimethod model

The application illustrated in this chapter uses CFA procedures to test 
hypotheses bearing on construct validity. Specifically, hypotheses are 
tested within the framework of a multitrait-multimethod (MTMM) design 
by which multiple traits are measured by multiple methods. Following 
from the seminal work of Campbell and Fiske (1959), construct validity 
research typically focuses on the extent to which data exhibit evidence of 
(a) convergent validity, the extent to which different assessment methods 
concur in their measurement of the same trait (i.e., construct; ideally, these 
values should be moderately high); (b) discriminant validity, the extent to 
which independent assessment methods diverge in their measurement of 
different traits (ideally, these values should demonstrate minimal conver-
gence); and (c) method effects, an extension of the discriminant validity 
issue. Method effects represent bias that can derive from use of the same 
method in the assessment of different traits; correlations among these 
traits are typically higher than those measured by different methods.

In the time since its inception, the original MTMM design (Campbell & 
Fiske, 1959) has been the target of much criticism as methodologists uncov-
ered a growing number of limitations in its basic analytic strategy (see, 
e.g., Marsh, 1988, 1989; Schmitt & Stults, 1986). Although several alternative 
MTMM approaches have been proposed in the interim (for an early review, 
see Schmitt & Stults), the analysis of MTMM data within the framework of 
covariance structure modeling has gained the most prominence. Within 
this analytic context, some argue for the superiority of the Correlated 
Uniqueness (CU) model (Kenny, 1976, 1979; Kenny & Kashy, 1992; Marsh, 
1989), while others support the general CFA (Conway, Scullen, Lievens, & 
Lance, 2004; Lance, Noble, & Scullen, 2002) or composite direct product 
model (Browne, 1984b). Nonetheless, a review of the applied MTMM lit-
erature reveals that the general CFA model1 has been, and continues to be, 
the method of choice (Kenny & Kashy; Marsh & Grayson, 1995), albeit with 
increasingly more and varied specifications of this model (see, e.g., Eid et 
al., 2008; Hox & Kleiboer, 2007; LaGrange & Cole, 2008). The popularity 
of this approach likely derives from Widaman’s (1985) seminal paper in 
which he proposed a taxonomy of nested model comparisons. For diverse 
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comparisons of the correlated uniqueness, composite direct  product, and 
the general CFA models, readers are referred to Bagozzi (1993); Bagozzi 
and Yi (1990, 1993); Byrne and Goffin (1993); Coenders and Saris (2000); 
Hernández and González-Romá (2002); Lance et al. (2002); Marsh and 
Bailey (1991); Marsh, Byrne, and Craven (1992); Marsh and Grayson (1995); 
Tomás, Hontangas, and Oliver (2000); and Wothke (1996).

The present application is taken from a study by Byrne and Bazana 
(1996), which was based on the general CFA approach to MTMM analysis. 
However, given increasing interest in the CU model over the intervening 
years, I also work through an analysis based on this approach to MTMM 
data. The primary intent of the original study was to test for evidence of 
convergent validity, discriminant validity, and method effects related to 
four facets of perceived competence (social, academic, English, and math-
ematics) as measured by self, teacher, parent, and peer ratings for early 
and late preadolescents and adolescents in grades 3, 7, and 11, respectively. 
For our purposes here, however, we focus only on data for late preadoles-
cents (grade 7; n = 193). (For further elaboration of the sample, instrumen-
tation, and analytic strategy, see Byrne & Bazana.)

Rephrased within the context of a MTMM design, the model of inter-
est in this chapter is composed of four traits (social competence, academic 
competence, English competence, and mathematics competence) and four 
methods (self-ratings, teacher ratings, parent ratings, and peer ratings). A 
schematic portrayal of this model is presented in Figure 10.1.

Before launching into a discussion of this model, I consider it worth-
while to make a slight diversion in order that I can show you an option in 
the AMOS Toolbar that can be very helpful when you are working with a 
complex model that occupies a lot of page space such as we have here. The 
difficulty with the building of this model is that the double-headed arrows 
extend beyond the drawing space allotted by the program. In Figure 10.2, 
however, I illustrate how you can get around that problem simply by click-
ing on the Fit-to-Page Icon identified with the cursor as shown to the left of 
the model. Clicking on this tool will immediately resize the model to fit 
within the page perimeter.

The general CFA approach to MTMM analyses
In testing for evidence of construct validity within the framework of the 
general CFA model, it has become customary to follow guidelines set forth 
by Widaman (1985). As such, the hypothesized MTMM model is compared 
with a nested series of more restrictive models in which specific parameters 
either are eliminated or are constrained equal to zero or 1.0. The difference 
in χ2 (∆χ2) provides the yardstick by which to judge evidence of convergent 
and discriminant validity. Although these evaluative comparisons are 
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made solely at the matrix level, the CFA format allows for an assessment 
of construct validity at the individual parameter level. A review of the 
literature bearing on the CFA approach to MTMM analyses indicates that 
assessment is typically formulated at both the matrix and the individual 
parameter levels; we examine both in the present application.

The MTMM model portrayed in Figure 10.1 represents the hypothesized 
model and serves as the baseline against which all other alternatively nested 
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Figure 10.1 Hypothesized MTMM general CFA model (Model 1: freely correlated 
traits; freely correlated methods).
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models are compared in the process of assessing evidence of construct and 
discriminant validity. Clearly, this CFA model represents a much more com-
plex structure than any of the CFA models examined thus far in this book. 
This complexity arises primarily from the loading of each observed variable 
onto both a trait and a method factor. In addition, the model postulates that, 
although the traits are correlated among themselves, as are the methods, 
any correlations between traits and methods are assumed to be zero.2

Testing for evidence of construct and discriminant validity involves 
comparisons between the hypothesized model (Model 1) and three alter-
native MTMM models. We turn now to a description of these four nested 
models; they represent those most commonly included in CFA MTMM 
analyses.

Model 1: Correlated traits/correlated methods

The first model to be tested (Model 1) represents the hypothesized model 
shown in Figure 10.1 and serves as the baseline against which all alternative 

Figure 10.2 AMOS Graphics: Resize icon showing oversized MTMM model to the 
right.
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MTMM models are compared. As noted earlier, because its specification 
includes both trait and method factors, and allows for correlations among 
traits and among methods, this model is typically the least restrictive.3

Before working through the related analyses, I wish first to clarify the 
names of the variables, and then to point out two important and unique 
features regarding the specification of factor variances and covariances 
related to this first model. With respect to the labeling mechanism, the 
variables SCSELF to SCPEER represent general Social Competence (SC) 
scores as derived from self, teacher, parent, and peer ratings. Relatedly, 
for each of the remaining traits (Academic Competence [AC], English 
Competence [EC], and Math Competence [MC]), there are ratings by self, 
teacher, parents, and peers.

We turn now to the two critically important features of this model. 
First, in viewing Figure 10.1, you will see a comma, followed by a “1” (,1) 
above each of the six factors in the model. This specification indicates that 
the variance for each of these factors is fixed to 1.00. If either a number 
(indicating a fixed parameter) or a label (indicating an estimated param-
eter) were to precede the comma, these markings would refer to the fac-
tor mean (see, e.g., Figure 8.11); any like markings that instead follow the 
comma refer to the factor variance. The question now is: Why are these 
factor variances specified as fixed parameters in the model? In answer-
ing this question, recall from Chapter 5 that in the specification of model 
parameters, one can either estimate a factor loading, or estimate the vari-
ance of its related factor, but cannot estimate both, the rationale under-
lying this caveat being linked to the issue of model identification. In all 
previous examples thus far in the book, one factor loading in every set of 
congeneric measures has been fixed to 1.00 for this purpose. However, in 
MTMM models, interest focuses on the factor loadings and, thus, the alter-
native approach to model identification is implemented. The process of 
fixing the factor variance to a value of 1.0 is easily accomplished in AMOS 
Graphics by first right-clicking on the factor, selecting Object Properties, 
clicking on the Parameter tab, and then entering a “1” in the Variance box 
as shown in Figure 10.3.

Second, note in Figure 10.1 that all trait (Social Competence to 
Mathematics Competence) and method (Self-Rating to Peer Rating) cova-
riances are freely estimated. Note, however, that covariances among traits 
and methods have not been specified (see note 2).

Let’s turn now to the test of this correlated traits/correlated meth-
ods (CTCM) model. Immediately upon clicking on the Calculate icon (or 
drop-down menu), you will be presented with the dialog box shown in 
Figure 10.4, which lists a series of covariance parameters and warns that 
these pairs must remain uncorrelated. In fact, the parameters listed rep-
resent all covariances between trait and method factors, which as I noted 
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Figure 10.3 AMOS Graphics: Object Properties dialog box with parameter tab acti-
vated and showing a value of 1 assigned to a factor variance.

Figure 10.4 AMOS Graphics: Warning dialog box re: trait and method factor 
correlations.
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earlier in this chapter cannot be estimated for statistical reasons. Thus, we 
can proceed by clicking on the Proceed With the Analysis tab.

In reviewing results for this initial analysis, we turn first to the 
“Parameter Summary” table, which is shown in Figure 10.5. Listed first in 
this summary are 48 weights (i.e., regression paths): 16 fixed weights asso-
ciated with the error terms, and 32 estimated weights associated with the 
factor loadings. Next, we have 12 covariances (6 for each set of trait and 
method factors) and 24 variances (8 fixed factor variances; 16 estimated 
error variances).

The next critically important result reported in the output file is the 
message that the solution is not admissible, which is reported in Figure 10.6. 
A right-click of the mouse on this statement (which is highlighted in blue 
in the output) produced a pop-up dialog box suggesting why the solution 
might be inadmissible. A review of the estimates for this solution shows 
the variance associated with the error term E2 to be negative.

It is now widely known that the estimation of improper estimates, 
such as these, is a common occurrence with applications of the general 
CFA model to MTMM data. Indeed, so pervasive is this problem that the 
estimation of a proper solution may be regarded as a rare find (see, e.g., 
Kenny & Kashy, 1992; Marsh, 1989; Wothke, 1993). Although these results 
can be triggered by a number of factors, one likely cause in the case of 
MTMM models is the overparameterization of the model (see Wothke, 
1993); this condition likely occurs as a function of the complexity of speci-
fication. In addressing this conundrum, early research has suggested a 
reparameterization of the model in the format of the correlated unique-
ness (CU) model (see Kenny, 1976, 1979; Kenny & Kashy, 1992; Marsh, 1989; 
Marsh & Bailey, 1991; Marsh & Grayson, 1995). Alternative approaches 
have appeared in the more recent literature; these include the use of mul-
tiple indicators (Eid, Lischetzke, Nussbeck, & Trierweiler, 2003; Tomás et 
al., 2000), the specification of different models for different types of meth-
ods (Eid et al., 2008), and the specification of equality constraints in the 
CU model (Coenders & Saris, 2000; Corten et al., 2002). Because the CU 
model has become the topic of considerable interest and debate over the 

Figure 10.5 AMOS Graphics: Parameter summary for initially hypothesized 
model.
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past few years, I considered it worthwhile to include this model also in the 
present chapter. However, given that (a) the CU model represents a special 
case of, rather than a nested model within, the general CFA framework, 
and (b) it is important first to work through the nested model comparisons 
proposed by Widaman (1985), I delay discussion and application of this 
model until later in the chapter.

Returning to our inadmissible solution, let’s review the variance esti-
mates (shown in Figure 10.7) where we find a negative variance associ-
ated error term E2. Important to this result is a study by Marsh et al. 
(1992) showing that when improper solutions occur in CFA modeling of 
MTMM data, one approach to resolution of the problem is to impose an 
equality constraint between parameters having similar estimates. Thus, 
in an attempt to resolve the inadmissible solution problem, Model 1 was 
respecified with the error variance for E2 constrained equal to that for 
E1, which represented a positive value of approximately the same size. 
Assignment of this constraint was implemented via the AMOS label-
ing process illustrated in Figure 10.8. (For a review of this process, see 
Chapters 5 and 7.)

This respecified model yielded a proper solution, the summary of 
which is reported in Figure 10.9; the estimates pertinent to the variances 
only are reported in Figure 10.10. As can be seen from the latter, this 
minor respecification resolved the negative error variance resulting in 
both parameters having an estimated value of .030.

Figure 10.6 AMOS Graphics: Warning dialog box advising of inadmissible 
solution.
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Goodness-of-fit statistics related to this model are reported in 
Table 10.1. As evidenced from these results, the fit between this respeci-
fied CTCM model and the data was almost perfect (CFI = .999; RMSEA = 
.011; 90% C.I. .000, .043). Indeed, had additional parameters been added to 

Figure 10.7 AMOS Graphics: Output file with problematic error variance circled.

Figure 10.8 AMOS Graphics: Micro view of labeled error terms constrained 
equal.
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Figure 10.9. AMOS Graphics: Model notation showing results of an admissible 
solution.

Figure 10.10 AMOS Graphics: Output file with constrained estimates high-
lighted.
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the model as a result of post hoc analyses, I would have concluded that 
the results were indicative of an overfitted model. However, because this 
was not the case, I can only presume that the model fits the data excep-
tionally well.

We turn now to three additional MTMM models against which modi-
fied Model 1 will be compared.

Model 2: No traits/correlated methods

Specification of parameters for this model is portrayed schematically in 
Figure 10.11. Of major importance with this model is the total absence of 
trait factors. It is important to note that for purposes of comparison across 
all four MTMM models, the constraint of equality between the error 
terms E1 and E2 is maintained throughout. Goodness-of-fit for this model 
proved to be very poor (χ2

(99) = 439.027; CFI = .753; RMSEA = .134, 90% C.I. 
.121, .147). A summary of comparisons between this model and Model 1, 
as well as between all remaining models, is tabled following this review 
of each MTMM model.

Table 10.1 Selected AMOS Output: Goodness-of-Fit Statistics for 
Correlated Traits/Correlated Methods Model

Model NPAR CMIN DF P CMIN/DF

Your model 59 78.721 77 .424 1.022
Saturated model 136 .000 0
Independence 
model

16 1496.312 120 .000 12.469

Baseline comparisons

Model
NFI  

Delta1
RFI  
rho1

IFI  
Delta2

TLI  
rho2 CFI

Your model .947 .918 .999 .998 .999
Saturated model 1.000 1.000 1.000
Independence 
model

.000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Your model .011 .000 .043 .987
Independence 
model

.244 .233 .256 .000
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Figure 10.11 MTMM Model 2 (no traits; correlated methods).
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Model 3: Perfectly correlated traits/freely correlated methods

In reviewing the specification for Model 3 shown in Figure 10.12, we can 
see that as with the hypothesized CTCM model (Model 1), each observed 
variable loads on both a trait and a method factor. However, in stark con-
trast to Model 1, this MTMM model argues for trait correlations that are 
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Figure 10.12 MTMM model 3 (perfectly correlated traits; freely correlated 
methods).
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perfect (i.e., they are equal to 1.0); consistent with both Models 1 and 2, 
the method factors are freely estimated. Although goodness-of-fit results 
for this model were substantially better than for Model 2, they nonethe-
less were indicative of only a marginally well-fitting model and one that 
was somewhat less well-fitting than Model 1 (χ2

(83) = 227.768; CFI = .895; 
RMSEA = .011, 90% C.I. .081, .110).

Model 4: Freely correlated traits/uncorrelated methods

This final MTMM model is portrayed in Figure 10.13 and differs from 
Model 1 only in the absence of specified correlations among the method 
factors. Goodness-of-fit results for this model revealed an exceptionally 
good fit to the data (χ2

(83) = 120.291; CFI = .973; RMSEA = .048, 90% C.I. = 
.027, .067).

Testing for evidence of convergent and discriminant 
validity: MTMM matrix-level analyses
Comparison of models

Now that we have examined goodness-of-fit results for each of the MTMM 
models, we can turn to the task of determining evidence of construct and 
discriminant validity. In this section, we ascertain information at the 
matrix level only, through the comparison of particular pairs of models. A 
summary of fit related to all four MTMM models is presented in Table 10.2, 
and results of model comparisons are summarized in Table 10.3.

Evidence of convergent validity

As noted earlier, one criterion of construct validity bears on the issue of 
convergent validity, the extent to which independent measures of the same 
trait are correlated (e.g., teacher and self-ratings of social competence); 
these values should be substantial and statistically significant (Campbell 
& Fiske, 1959). Using Widaman’s (1985) paradigm, evidence of convergent 
validity can be tested by comparing a model in which traits are specified 
(Model 1) with one in which they are not (Model 2), the difference in χ2 
between the two models (∆χ2) providing the basis for judgment; a signifi-
cant difference in χ2 supports evidence of convergent validity. In an effort 
to provide indicators of nested model comparisons that were more real-
istic than those based on the χ2 statistic, Bagozzi and Yi (1990), Widaman 
(1985), and others have examined differences in CFI values. However, until 
the work of Cheung and Rensvold (2002), these ∆CFI values have served 
in only a heuristic sense as an evaluative base upon which to determine 
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Figure 10.13 MTMM model 4 (freely correlated traits; uncorrelated methods).
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evidence of convergent and discriminant validity. Recently, Cheung and 
Rensvold examined the properties of 20 goodness-of-fit indices, within 
the context of invariance testing, and arbitrarily recommended that ∆CFI 
values should not exceed .01. Although the present application does not 
include tests for invariance, the same principle holds regarding the model 
comparisons. As shown in Table 10.3, the ∆χ2 was highly significant (χ2

(22) = 
360.306, p < .001), and the difference in practical fit (∆CFI = .246) substan-
tial, thereby arguing for the tenability of this criterion.

Evidence of discriminant validity

Discriminant validity is typically assessed in terms of both traits and 
methods. In testing for evidence of trait discriminant validity, one is 

Table 10.3 Differential Goodness-of-Fit Indices for  
MTMM Nested Model Comparisons

Difference in

Model comparisons χ2 df CFI

Test of Convergent Validity
Model 1a versus Model 2 (traits) 360.306 22 .246

Test of Discriminant Validity
Model 1a versus Model 3 (traits) 149.047 6 .104
Model 1a versus Model 4 (methods) 41.570 6 .026

a Represents respecified model with an equality constraint imposed 
between E1 and E2.

Table 10.2 Summary of Goodness-of-Fit Indices for MTMM Models

RMSEA

Model χ2 df CFI RMSEA 90% C.I. PCLOSE

1.  Freely correlated 
traits;a freely 
correlated methods

78.721 77 .999 .011 .000, .043 .987

2.  No traits; freely 
correlated methods

439.027 99 .753 .134 .121, .147 .000

3.  Perfectly correlated 
traits; freely 
correlated methods

227.768 83 .895 .095 .081, .110 .000

4.  Freely correlated 
traits; uncorrelated 
methods

120.291 83 .973 .048 .027, .067 .000

a Represents respecified model with an equality constraint imposed between E1 and E2.
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interested in the extent to which independent measures of different traits 
are correlated; these values should be negligible. When the indepen-
dent measures represent different methods, correlations bear on the 
discriminant validity of traits; when they represent the same method, 
correlations bear on the presence of method effects, another aspect of 
discriminant validity.

In testing for evidence of discriminant validity among traits, we 
compare a model in which traits correlate freely (Model 1) with one in 
which they are perfectly correlated (Model 3); the larger the discrepancy 
between the χ2 and the CFI values, the stronger the support for evidence 
of discriminant validity. This comparison yielded a ∆χ2 value that was sta-
tistically significant (χ2

(6) = 149.047, p < .001), and the difference in practical 
fit was fairly large (∆CFI = .100), thereby suggesting only modest evidence 
of discriminant validity. As was noted for the traits (see endnote 3), we 
could alternatively specify a model in which perfectly correlated method 
factors are specified; as such, a minimal ∆χ2 would argue against evidence 
of discriminant validity.

Based on the same logic, albeit in reverse, evidence of discriminant 
validity related to method effects can be tested by comparing a model in 
which method factors are freely correlated (Model 1) with one in which 
the method factors are specified as uncorrelated (Model 4). In this case, a 
large ∆χ2 (or substantial ∆CFI) argues for the lack of discriminant validity 
and, thus, for common method bias across methods of measurement. On 
the strength of both statistical (∆χ2

(6) = 41.570) and nonstatistical (∆CFI = 
.026) criteria, as shown in Table 10.3, it seems reasonable to conclude that 
evidence of discriminant validity for the methods was substantially stron-
ger than it was for the traits.

Testing for evidence of convergent and discriminant 
validity: MTMM parameter-level analyses
Examination of parameters

A more precise assessment of trait- and method-related variance can be 
ascertained by examining individual parameter estimates. Specifically, 
the factor loadings and factor correlations of the hypothesized model 
(Model 1) provide the focus here. Because it is difficult to envision the 
MTMM pattern of factor loadings and correlations from the output when 
more than six factors are involved, these values have been tabled to facili-
tate the assessment of convergent and discriminant validity; standardized 
estimates for the factor loadings are summarized in Table 10.4, and for the 
factor correlations in Table 10.5. (For a more extensive discussion of these 
MTMM findings, see Byrne & Bazana, 1996.)
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Evidence of convergent validity

In examining individual parameters, convergent validity is reflected in the 
magnitude of the trait loadings. As indicated in Table 10.4, all trait load-
ings are statistically significant with magnitudes ranging from .276 (peer 
ratings of English competence) to .969 (self-ratings of social competence). 
However, in a comparison of factor loadings across traits and methods, 
we see that the proportion of method variance exceeds that of trait vari-
ance for all but one of the teacher ratings (social competence), only one 
of the parent ratings (academic competence), and all of the peer ratings.4 
Thus, although at first blush, evidence of convergent validity appeared to 
be fairly good at the matrix level, more in-depth examination at the indi-
vidual parameter level reveals the attenuation of traits by method effects 

Table 10.4 Trait and Method Loadings for MTMM Model 1  
(Correlated Traits; Correlated Methods)a

SC  AC  EC  MC  SR TR PAR PER

Self-ratings (SR)
Social competence .969 .007b

Academic competence .805 .511
English competence .907 – .006b

Mathematics competence .773 .405

Teacher ratings (TR)
Social competence .361 .274
Academic competence .312 .892
English competence .326  .758
Mathematics competence .478 .592

Parent ratings (PAR)
Social competence .537 .376
Academic competence .512 .675
English competence .609 .441
Mathematics competence .726 .522

Peer ratings (PER)
Social competence .281 .396
Academic competence .312 .883
English competence .276 .652
Mathematics competence .372 .669
a Standardized estimates.
b Not statistically significant (p < .05).
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related to teacher and peer ratings, thereby tempering evidence of conver-
gent validity (see also Byrne & Goffin, 1993, with respect to adolescents).

Evidence of discriminant validity

Discriminant validity bearing on particular traits and methods is deter-
mined by examining the factor correlation matrices. Although, concep-
tually, correlations among traits should be negligible in order to satisfy 
evidence of discriminant validity, such findings are highly unlikely in 
general, and with respect to psychological data in particular. Although 
these findings, as shown in Table 10.5, suggest that relations between 
perceived academic competence (AC) and the subject-specific perceived 
competencies of English (EC) and mathematics (MC) are most detrimen-
tal to the attainment of trait discriminant validity, they are nonetheless 
consistent with construct validity research in this area as it relates to late 
preadolescent children (see Byrne & Worth Gavin, 1996).

Finally, an examination of method factor correlations in Table 10.5 
reflects on their discriminability, and thus on the extent to which the 
methods are maximally dissimilar; this factor is an important underlying 
assumption of the MTMM strategy (see Campbell & Fiske, 1959). Given 
the obvious dissimilarity of self, teacher, parent, and peer ratings, it is 
somewhat surprising to find a correlation of .562 between teacher and 
parent ratings of competence. One possible explanation of this finding is 
that, except for minor editorial changes necessary in tailoring the instru-
ment to either teacher or parent as respondents, the substantive content of 
all comparable items in the teacher and parent rating scales were identi-
cally worded, the rationale here being to maximize responses by different 
raters of the same student.

The correlated uniqueness approach 
to MTMM analyses
As noted earlier, the CU model represents a special case of the general CFA 
model. Building upon the early work of Kenny (1976, 1979), Marsh (1988, 
1989) proposed this alternative MTMM model in answer to the numerous 
estimation and convergence problems encountered with analyses of gen-
eral CFA models and, in particular, with the correlated traits/correlated 
methods model (Model 1 in this application). Recently, however, research 
has shown that the CU model, also, is not without its own problems, and 
researchers have proposed a number of specification alternatives to the 
general CU model (see, e.g., Conway et al., 2004; Corten et al., 2002; Lance 
et al., 2002). The hypothesized CU model tested here, however, is based on 
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the originally postulated general CU model (see, e.g., Kenny, 1976, 1979; 
Kenny & Kashy, 1992; Marsh, 1989). A schematic representation of this 
model is shown in Figure 10.14.

In reviewing the model depicted in Figure 10.14, you will note that 
it embodies only the four correlated trait factors. In this aspect only, it 
is consistent with the model shown in Figure 10.1. The notably different 
feature about the CU model, however, is that although no method fac-
tors are specified per se, their effects are implied from the specification 
of correlated error terms (the uniquenesses)5 associated with each set of 
observed variables embracing the same method. For example, as indicated 
in Figure 10.14, all error terms associated with the self-rating measures 
of social competence are intercorrelated; likewise, those associated with 
teacher, parent, and peer ratings are intercorrelated.

Consistent with the correlated traits/uncorrelated methods model 
(Model 4 in this application), the CU model assumes that effects associated 
with one method are uncorrelated with those associated with the other 
methods (Marsh & Grayson, 1995). However, one critically important dif-
ference between the CU model and both the correlated traits/correlated 
methods (Model 1) and correlated traits/no methods (Model 4) models 
involves the assumed unidimensionality of the method factors. Whereas 
Models 1 and 4 implicitly assume that the method effects associated with 
a particular method are unidimensional (i.e., they can be explained by a 
single latent method factor), the CU model carries no such assumption 
(Marsh & Grayson, 1995). These authors further noted (Marsh & Grayson, 
1995, p. 185) that when an MTMM model includes more than three trait fac-
tors, this important distinction can be tested. However, when the number 
of traits equals three, the CU model is formally equivalent to the other two 
in the sense that the “number of estimated parameters and goodness-of-fit 
are the same, and parameter estimates from one can be transformed into 
the other” (Marsh & Grayson, 1995, p. 185).

Of course, from a practical perspective, the most important distinc-
tion between the CU model and Models 1 and 4 is that it typically results 
in a proper solution (Kenny & Kashy, 1992; Marsh, 1989; Marsh & Bailey, 
1991). Model 1, on the other hand, is now notorious for its tendency to 
yield inadmissible solutions, as we observed in the present applica-
tion. As a case in point, Marsh and Bailey (1991), in their analyses of 
435 MTMM matrices based on both real and simulated data, reported 
that, whereas the correlated traits/correlated methods model resulted in 
improper solutions 77% of the time, the correlated uniqueness model 
yielded proper solutions nearly every time (98%). (For additional exam-
ples of the incidence of improper solutions with respect to Model 1, see 
Kenny & Kashy.) We turn now to the analyses based on the CU model 
(Model 5).

RT63727.indb   295 7/6/09   7:27:34 PM



296 Structural equation modeling with AMOS 2nd edition

MCSelf

ECSelf

ACSelf

SCSelf

MCTch

ECTch

ACTch

SCTch

MCPar

ECPar

ACPar

SCPar

MCPeer

ECPeer

ACPeer

SCPeer

1

Social
Competence

1

Academic
Competence

1

English
Competence

1

Mathematics
Competence

E1

E3

E2

E4

E6

E5

E7

E8

E9

E10

E11

E12

E13

E14

E15

E161

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 10.14 MTMM model 5 (correlated uniqueness model).
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Model 5: Correlated uniqueness model

Reviewing, once again, the model depicted in Figure 10.14, we see that 
there are only four trait factors, and that these factors are hypothesized 
to correlate among themselves. In addition, we find the correlated error 
terms associated with each set of observed variables derived from the same 
measuring instrument (i.e., sharing the same method of measurement).

We turn now to selected sections of the AMOS output file pertinent 
to this correlated uniqueness model. In reviewing Table 10.6, we see that 
this model represents an excellent fit to the data (χ2

(74) = 96.473; CFI = .984; 
RMSEA = .040, 90%C.I. = .009, .060). Furthermore, consistent with past 
reported results (e.g., Kenny & Kashy, 1992; Marsh & Bailey, 1991), this 
solution resulted in no problematic parameter estimates.

Assessment of convergent and discriminant validity related to the CU 
model can be accomplished in the same way as it is for the general CFA 
model when focused at the individual parameter level. As can be seen in 
Table 10.7, evidence related to the convergent validity of the traits, not sur-
prisingly, was substantial. Although all parameters were similar in terms 
of substantiality to those presented for Model 1 (see Table 10.4), there are 
interesting differences between the two models. In particular, these dif-
ferences reveal all teacher and peer rating loadings to be higher for the 
CU model than for Model 1. Likewise, parent ratings, as they relate only 
to Social Competence, are also higher than for Model 1.

Table 10.6 Selected AMOS Output: Goodness-of-Fit Statistics  
for Correlated Uniqueness Model

Model NPAR CMIN DF P CMIN/DF

Your model 62 96.473 74 .041 1.304
Saturated model 136 .000 0
Independence model 16 1496.312 120 .000 12.469

Baseline comparisons

Model
NFI 

Delta1
RFI  
rho1

IFI 
Delta2

TLI  
rho2 CFI

Your model .936 .895 .984 .974 .984
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Your model .040 .009 .060 .772
Independence model .244 .233 .256 .000
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Let’s look now at the factor correlations relevant to the traits; these 
estimates are presented in Table 10.8. In reviewing these values, we see 
that all but one estimated value is statistically significant and, for the most 
part, of similar magnitude across Model 1 and the CU model. The correla-
tion between Social Competence and English Competence was found not 
to be statistically significant (p < .05) for the CU model.

Method effects in the CU model are determined by the degree to 
which the error terms are correlated with one another (Kenny & Kashy, 
1992). In contrast to Model 1, there is no assumption that the method factor 
remains the same for all measures embracing the same method. Rather, as 
Kenny and Kashy explained, “In the Correlated Uniqueness model, each 
measure is assumed to have its own method effect, and the covariances 
between measures using the same method assess the extent to which 
there is a common method factor” (p. 169). In other words, as Kenny and 

Table 10.7 Trait and Method Loadings for MTMM 
Model 5 (Correlated Uniqueness)a

SC AC EC MC

Self-ratings (SR)
Social competence .757 
Academic competence .454 
English competence .393
Mathematics competence .610

Teacher ratings (TR)
Social competence .464 
Academic competence .424 
English competence .447 
Mathematics competence .537

Parent ratings (PAR)
Social competence .679
Academic competence .413
English competence .499
Mathematics competence .695

Peer ratings (PER)
Social competence .362
Academic competence .422
English competence .419
Mathematics competence .447
a Standardized estimates.
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Kashy further noted, whereas the general CFA MTMM model assumes 
that method effects are invariant across traits, the CU model allows for the 
multidimensionality of method effects. (For critiques of these effects, see 
Conway et al., 2004; Lance et al., 2002. For an attempt to understand the 
substance of these correlated error terms, see Saris & Aalberts, 2003.) It is 
interesting to see in Table 10.9 that the strongest method effects are clearly 
associated with teacher and peer ratings of the three academic competen-
cies, and with parent ratings of only math competence. Indeed, from a 
substantive standpoint, these findings at least for the teacher and peer 
ratings certainly seem perfectly reasonable. On the other hand, the strong 
method effects shown for parent ratings involving relations between aca-
demic and math competencies are intriguing. One possible explanation 
may lie in the fact that when parents think “academic competence,” their 
thoughts gravitate to “math competence.” As such, academic competence 
appears to be defined in terms of how competent they perceive their son 
or daughter to be in math.

In concluding this chapter, it is worthwhile to underscore Marsh 
and Grayson’s (1995, p. 198) recommendation regarding the analysis of 
MTMM data. As they emphasized, “MTMM data have an inherently com-
plicated structure that will not be fully described in all cases by any of 
the models or approaches typically considered. There is, apparently, no 
‘right’ way to analyze MTMM data that works in all situations” (Marsh 
& Grayson, 1995, p. 198). Consequently, Marsh and Grayson (1995), sup-
ported by Cudeck (1988), strongly advised that in the study of MTMM 
data, researchers should always consider alternative modeling strategies 
(see, e.g., Eid et al., 2009). In particular, Marsh and Grayson (1995) sug-
gested an initial examination of data within the framework of the original 
Campbell-Fiske guidelines. This analysis should then be followed by the 
testing of a subset of at least four CFA models (including the CU model); 
for example, the five models considered in the present application would 
constitute an appropriate subset. Finally, given that the Composite Direct 

Table 10.8 Trait and Method Correlations for MTMM Model 5 
(Correlated Uniqueness)a

Traits

Measures SC AC EC MC

Social competence (SC) 1.000
Academic competence (AC) .356 1.000
English competence (EC) .167b .868 1.000
Mathematics competence (MC) .325 .800 .591 1.000
a Standardized estimates.
b Not statistically significant (p < .05).
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Product Model6 is designed to test for the presence of multiplicative rather 
than additive effects, it should also be included in the MTMM analysis 
alternative approach strategy, but for a critique of this approach, readers 
are referred to Corten et al. (2002). In evaluating results from each of the 
covariance structure models noted here, Marsh and Grayson (1995) cau-
tioned that, in addition to technical considerations such as convergence 
to proper solutions and goodness-of-fit, researchers should place a heavy 
emphasis on substantive interpretations and theoretical framework.

Endnotes
 1. The term general is used to distinguish the generic CFA model from other 

special cases, such as the CU model (Marsh, 1989).
 2. As a consequence of problems related to both the identification and estima-

tion of CFA models, trait–method correlations cannot be freely estimated (see 
Schmitt & Stults, 1986; Widaman, 1985).

 3. Alternatively, we could have specified a model in which the method factors 
were uncorrelated, indicating their zero correlation. Although both specifica-
tions provide the same yardstick by which to determine discriminant valid-
ity, the interpretation of results must necessarily be altered accordingly.

 4. Trait and method variance, within the context of the general CFA MTMM 
model, equals the factor loading squared.

 5. As noted in Chapter 3, the term uniqueness is used in the factor analytic sense 
to mean a composite of random measurement error and specific measure-
ment error associated with a particular measuring instrument.

 6. Whereas CFA models assume that test scores represent the sum of trait and 
method components (i.e., additive effects), the composite direct product 
model assumes that they derive from the product of the trait and method 
components (i.e., multiplicative effects).
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elevenchapter 

Testing for change over time
The latent growth curve model

Behavioral scientists have long been intrigued with the investigation of 
change. From a general perspective, questions of interest in such inquiry 
might be “Do the rates at which children learn differ in accordance with 
their interest in the subject matter?” From a more specific perspective, 
such questions might include “To what extent do perceptions of ability in 
particular school subjects change over time?” or “Does the rate at which 
self-perceived ability in math and/or science change differ for adolescent 
boys and girls?” Answers to questions of change such as these necessarily 
demand repeated measurements on a sample of individuals at multiple 
points in time. The focus of this chapter is directed toward addressing 
these types of change-related questions.

The application demonstrated here is based on a study by Byrne and 
Crombie (2003) in which self-ratings of perceived ability in math, lan-
guage, and science were measured for 601 adolescents over a 3-year period 
that targeted grades 8, 9, and 10. In the present chapter, however, we focus 
on subscale scores related only to the subject areas of math and science. 
Consistent with most longitudinal research, some subject attrition occurred 
over the 3-year period; 101 cases were lost, thereby leaving 500 complete-
data cases. In the original study, this issue of missingness was addressed 
by employing a multiple-sample missing-data model that involved three 
time-specific groups.1 However, because the primary focus of this chapter 
is to walk you through a basic understanding and application of a simple 
latent growth curve (LGC) model, the present example is based on only 
the group having complete data across all three time points.2 Nonetheless, 
I urge you to familiarize yourself with the pitfalls that might be encoun-
tered if you work with incomplete data in the analysis of LGC models 
(see Duncan & Duncan, 1994, 1995; Muthén, Kaplan, & Hollis, 1987) and 
to study the procedures involved in working with a missing data model 
(see Byrne & Crombie; Duncan & Duncan, 1994, 1995; Duncan, Duncan, 
Strycker, Li, & Alpert, 1999). For an elaboration of missing data issues in 
general, see Little and Rubin (1987), Muthén et al. (1987), and Chapter 13 of 
this volume; and related to longitudinal models in particular, see Duncan, 
Duncan, and Strycker (2006) and Hofer and Hoffman (2007).
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Historically, researchers have typically based analyses of change on 
two-wave panel data, a strategy that Willett and Sayer (1994) deemed to 
be inadequate because of limited information. Addressing this weakness 
in longitudinal research, Willett (1988) and others (Bryk & Raudenbush, 
1987; Rogosa, Brandt, & Zimowski, 1982; Rogosa & Willett, 1985) outlined 
methods of individual growth modeling that, in contrast, capitalized on 
the richness of multiwave data, thereby allowing for more effective test-
ing of systematic interindividual differences in change. (For a comparative 
review of the many advantages of LGC modeling over the former approach 
to the study of longitudinal data, see Tomarken & Waller, 2005.)

In a unique extension of this earlier work, researchers (e.g., McArdle 
& Epstein, 1987; Meredith & Tisak, 1990; Muthén, 1997) have shown how 
individual growth models can be tested using the analysis of mean and 
covariance structures within the framework of structural equation mod-
eling (SEM). Considered within this context, it has become customary 
to refer to such models as latent growth curve (LGC) models. Given its 
many appealing features (for an elaboration, see Willett and Sayer, 1994), 
together with the ease with which researchers can tailor its basic struc-
ture for use in innovative applications (see, e.g., Cheong, MacKinnon, & 
Khoo, 2003; Curran, Bauer, & Willoughby, 2004; Duncan, Duncan, Okut, 
Strycker, & Li, 2002; Hancock, Kuo, & Lawrence, 2001; Li et al., 2001), it 
seems evident that LGC modeling has the potential to revolutionize anal-
yses of longitudinal research.

In this chapter, I introduce you to the topic of LGC modeling via 
three gradations of conceptual understanding. First, I present a general 
overview of measuring individual change in self-perceptions of math 
and science ability over a 3-year period from grade 8 through grade 10 
(intraindividual change). Next, I illustrate the testing of an LGC model 
that measures differences in such change across all subjects (individual 
change). Finally, I demonstrate the addition of gender to the LGC model 
as a possible time-invariant predictor of change that may account for any 
heterogeneity in the individual growth trajectories (i.e., intercept, slope) of 
perceived ability in math and science.

Measuring change in individual growth 
over time: The general notion
In answering questions of individual change related to one or more 
domains of interest, a representative sample of individuals must be 
observed systematically over time, and their status in each domain mea-
sured on several temporally spaced occasions (Willett & Sayer, 1994). 
However, several conditions may also need to be met. First, the outcome 
variable representing the domain of interest must be of a continuous scale 
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(but see Curran, Edwards, Wirth, Hussong, & Chassin, 2007, and Duncan 
et al., 2006, for more recent developments addressing this issue). Second, 
while the time lag between occasions can be either evenly or unevenly 
spaced, both the number and the spacing of these assessments must be 
the same for all individuals. Third, when the focus of individual change is 
structured as an LGC model, with analyses to be conducted using a SEM 
approach, data must be obtained for each individual on three or more 
occasions. Finally, the sample size must be large enough to allow for the 
detection of person-level effects (Willett & Sayer, 1994). Accordingly, one 
would expect minimum sample sizes of not less than 200 at each time 
point (see Boomsma, 1985; Boomsma & Hoogland, 2001).

The hypothesized dual-domain LGC model
Willett and Sayer (1994) have noted that the basic building blocks of 
the LGC model comprise two underpinning submodels which they 
have termed “Level 1” and “Level 2” models. The Level 1 model can be 
thought of as a “within-person” regression model that represents indi-
vidual change over time with respect to (in the present instance) two 
single-outcome variables, perceived ability in math and perceived ability in 
science. The Level 2 model can be viewed as a “between-person” model 
that focuses on interindividual differences in change with respect to 
these outcome variables. We turn now to the first of these two submod-
els, which addresses the issue of intraindividual change.

Modeling intraindividual change

The first step in building an LGC model is to examine the within-person 
growth trajectory. In the present case, this task translates into determin-
ing, for each individual, the direction and extent to which his or her 
score in self-perceived ability in math and science changes from grade 8 
through grade 10. Of critical import in most appropriately specifying and 
testing the LGC model, however, is that the shape of the growth trajectory 
be known a priori. If the trajectory of hypothesized change is considered 
to be linear (a typical assumption underlying LGC modeling in practice), 
then the specified model will include two growth parameters: (a) an inter-
cept parameter representing an individual’s score on the outcome variable 
at Time 1, and (b) a slope parameter representing the individual’s rate of 
change over the time period of interest. Within the context of our work 
here, the intercept represents an adolescent’s perceived ability in math 
and science at the end of grade 8; the slope represents the rate of change 
in this value over the 3-year transition from grade 8 through grade 10. As 
reported in Byrne and Crombie (2003), this assumption of linearity was 
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tested and found to be tenable.3 (For an elaboration of tests of underlying 
assumptions, see Byrne and Crombie; Willett & Sayer, 1994.)

Of the many advantages in testing for individual change within the 
framework of a structural equation model over other longitudinal strate-
gies, two are of primary importance. First, this approach is based on the 
analysis of mean and covariance structures and, as such, can distinguish 
group effects observed in means from individual effects observed in cova-
riances. Second, a distinction can be made between observed and unob-
served (or latent) variables in the specification of models. This capability 
allows for both the modeling and estimation of measurement error. With 
these basic concepts in hand, let’s turn now to Figure 11.1, where the hypoth-
esized dual-domain model to be tested is schematically presented.

In reviewing this model, focus first on the six observed variables 
enclosed in rectangles at the top of the path diagram. Each variable con-
stitutes a subscale score at one of three time points, with the first three 
representing perceived math ability, and the latter three, perceived science 
ability. Associated with each of these observed measures is their matching 
random measurement error term (E1–E6). Moving down to the bottom of 
the diagram, we see two latent factors associated with each of these math 
and science domains; these factors represent the intercept and slope for 
perceived math ability and perceived science ability, respectively.

Let’s turn now to the modeled paths in the diagram. The arrows lead-
ing from each of the four factors to their related observed variables rep-
resent the regression of observed scores at each of three time points onto 
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Figure 11.1 Hypothesized LGC model.
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their appropriate Intercept and Slope factors. As usual, the arrows leading 
from the E’s to the observed variables represent the influence of random 
measurement error. Finally, the modeled covariance between each pair of 
Intercept and Slope factors (for math and science ability) is assumed in the 
specification of an LGC model.

The numerical values assigned to the paths flow from the Intercept 
and Slope factors to the observed variables; these paths, of course, repre-
sent fixed parameters in the model. The 1’s specified for the paths flow-
ing from the Intercept factor to each of the observed variables indicate 
that each is constrained to a value of 1.0. This constraint reflects the fact 
that the intercept value remains constant across time for each individual 
(Duncan et al., 1999). The values of 0, 1, and 2 assigned to the slope param-
eters represent Years 1, 2, and 3, respectively. These constraints address 
the issue of model identification; they also ensure that the second fac-
tor can be interpreted as a slope. Three important points are of interest 
with respect to these fixed slope values: First, technically speaking, the 
first path (assigned a zero value) is really nonexistent and, therefore, has 
no effect. Although it would be less confusing to simply eliminate this 
parameter, it has become customary to include this path in the model, 
albeit with an assigned value of zero (Bentler, 2005). Second, these val-
ues represent equal time intervals (1 year) between measurements; had 
data collection taken place at unequal intervals, the values would need to 
be calculated accordingly (e.g., 6 months = .5). (For an example of needed 
adjustment to time points, see Byrne, Lam, & Fielding, 2008.) Third, the 
choice of fixed values assigned to the Intercept and Slope factor loadings 
is somewhat arbitrary, as any linear transformation of the time scale is 
usually permissible, and the specific coding of time chosen determines 
the interpretation of both factors. The Intercept factor is tied to a time 
scale (Duncan et al., 1999) because any shift in fixed loading values on 
the Slope factor will necessarily modify the scale of time bearing on the 
Intercept factor, which, in turn, will influence interpretations (Duncan 
et al., 1999). Relatedly, the variances and correlations among the factors in 
the model will change depending on the chosen coding (see, e.g., Bloxis 
& Cho, 2008).

In this section, our focus is on the modeling of intraindividual 
change. Within the framework of SEM, this focus is captured by the mea-
surement model, the portion of a model that incorporates only linkages 
between the observed variables and their underlying unobserved factors. 
As you are well aware by now, of primary interest in any measurement 
model is the strength of the factor loadings or regression paths linking 
the observed and unobserved variables. As such, the only parts of the 
model in Figure 11.1 that are relevant in the modeling of intraindivid-
ual change are the regression paths linking the six observed variables 
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to the four factors (two Intercepts, two Slopes), the factor variances and 
covariances, and the related measurement errors associated with these 
observed variables.

Essentially, we can think of this part of the model as an ordinary 
factor analysis model with two special features. First, all the loadings 
are fixed—there are no unknown factor loadings. Second, the particular 
pattern of fixed loadings plus the mean structure allows us to interpret 
the factors as Intercept and Slope factors. As in all factor models, the 
present case argues that each adolescent’s perceived math and science 
ability scores, at each of three time points (Time 1 = 0; Time 2 = 1; Time 
3 = 2), are a function of three distinct components: (a) a factor-loading 
matrix of constants (1; 1; 1) and known time values (0; 1; 2) that remain 
invariant across all individuals, multiplied by (b) a latent growth curve 
vector containing individual-specific and unknown factors, here called 
individual growth parameters (Intercept, Slope), plus (c) a vector of individ-
ual-specific and unknown errors of measurement. Whereas the latent 
growth curve vector represents the within-person true change in per-
ceived math ability and perceived science ability over time, the error vector 
represents the within-person noise that serves to erode these true change 
values (Willett & Sayer, 1994).

In preparing for transition from the modeling of intraindividual 
change to the modeling of interindividual change, it is important that we 
review briefly the basic concepts underlying the analyses of mean and 
covariance structures in SEM. When population means are of no interest 
in a model, analysis is based on only covariance structure parameters. As 
such, all scores are considered to be deviations from their means, and, 
thus, the constant term (represented as α in a regression equation) equals 
zero. Given that mean values played no part in the specification of the 
Level 1 (or within-person) portion of our LGC model, only the analysis 
of covariance structures is involved. However, in moving to Level 2, the 
between-person portion of the model, interest focuses on mean values 
associated with the Intercept and Slope factors; these values in turn influ-
ence the means of the observed variables. Because both levels are involved 
in the modeling of interindividual differences in change, analyses are now 
based on both mean and covariance structures.

Modeling interindividual differences in change

Level 2 argues that, over and above hypothesized linear change in per-
ceived math ability and perceived science ability over time, trajectories will 
necessarily vary across adolescents as a consequence of different inter-
cepts and slopes. Within the framework of SEM, this portion of the model 
reflects the “structural model” component which, in general, portrays 
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relations among unobserved factors and postulated relations among 
their associated residuals. Within the more specific LGC model, however, 
this structure is limited to the means of the Intercept and Slope factors, 
along with their related variances, which in essence represent deviations 
from the mean. The means carry information about average intercept and 
slope values, while the variances provide information on individual dif-
ferences in intercept and slope values. The specification of these param-
eters, then, makes possible the estimation of interindividual differences 
in change.

Let’s now reexamine Figure 11.1, albeit in more specific terms in order 
to clarify information bearing on possible differences in change across 
time. Within the context of the first construct, perceived ability in math, 
interest focuses on five parameters that are key to determining between-
person differences in change: two factor means (Intercept; Slope), two 
factor variances, and one factor covariance. The factor means represent 
the average population values for the Intercept and Slope and answer the 
question “What is the population mean starting point and mean incre-
ment in perceived math ability from grades 8 through 10?” The factor vari-
ances represent deviations of the individual Intercepts and Slopes from 
their population means, thereby reflecting population interindividual dif-
ferences in the initial (grade 8) perceived math ability scores, and the rate 
of change in these scores, respectively. Addressing the issue of variabil-
ity, these key parameters answer the question “Are there interindividual 
differences in the starting point and growth trajectories of perceived math 
ability in the population?” Finally, the factor covariance represents the 
population covariance between any deviations in initial status and rate 
of change and answers the question “Do students who start higher (or 
lower) in perceived math ability tend to grow at higher (or lower) rates in 
that ability?”

Now that you have a basic understanding of LGC modeling, in 
general, and as it bears specifically on our hypothesized dual-domain 
model presented in Figure 11.1, let’s direct our attention now on both 
the modeling and testing of this model within the framework of AMOS 
Graphics.

Testing latent growth curve models: 
A dual-domain model
The hypothesized model

In building an LGC model using AMOS Graphics, the program provides 
what it terms a Plug-In, an option that serves as a starter kit in providing 
the basic model and associated parameter specification. To use this 
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Plug-In, click on the Plug-In menu and select Growth Curve Model, as shown 
in Figure 11.2. Once you make this selection, you will need to specify the 
number of time points pertinent to your data (see Figure 11.3). Of course, 
3 is the default value as it represents the minimal appropriate number for 
LGC modeling.

Shown in Figure 11.4 is the automated LGC model that appears follow-
ing the two previous steps. Simply duplicating this model allows for its 
application to the dual-domain model tested in this chapter. Importantly, 
however, there are several notations on this model that I consider to be 

Figure 11.2 AMOS Graphics: Plug-in drop-down menu with LGC model 
selected.

Figure 11.3 AMOS Graphics: LGC Modeling dialog box requesting information on 
number of time points involved.
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inappropriate specifications for our hypothesized model. As a result, you 
will note their absence from the model portrayed in Figure 11.1. (These 
modifications are easily implemented via the Object Properties dialog box, 
as has been demonstrated elsewhere in this volume, and are shown below 
in Figures 11.5 and 11.8.) First, associated with each of the three error 
terms you will see a zero value, followed by a comma and the letters Var. 
As you know from Chapter 8, the first of these represents the mean, and 
the second, the variance of each error term. As per AMOS Graphics nota-
tion, these labels indicate that the means of all error terms are constrained 
to zero and their variances are constrained equal across time. However, 
because specification of equivalent error variances would be inappropri-
ate in the testing of our hypothesized model, these labels are not specified 
in Figure 11.1. Indeed, error variances contribute importantly to the inter-
pretation of model parameters through correction for measurement error 
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Figure 11.4 AMOS Graphics: Plug-in automated LGC model.
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associated with the variances of the Intercept and Slope factors. In other 
words, specification of error variance allows for the same basic interpre-
tation of model parameters, albeit with correction for random measure-
ment error (Duncan et al., 2006). In all likelihood, the rationale underlying 
specification of the error variance equalities in the automated model is to 
offset an otherwise condition of model underidentification for the single-
domain model generated by the Plug-In feature.

A second change between the model shown in Figure 11.1 and that 
of Figure 11.4 involves labels associated with the latent factors. On the 
automated model, you will note the labels IMean, IVariance, SMean, and 
SVariance associated with the Intercept and Slope factors, respectively. 
Again, these labels signal that these factor parameters are constrained 
equal across time. Because these constraint specifications are inappro-
priate for our analyses, they are not included in the hypothesized model. 
Third, note that the paths leading from the Slope factor to the observed 
variable for each time point are numbered 0, .50, and 1, whereas these 
path parameters in our hypothesized model are numbered 0, 1, and 
2 in accordance with the time lag between data collections. Finally, 
of a relatively minor note is a change in orientation of the numbers 
assigned to the Intercept and Slope paths from oblique to horizontal 
(see Figure 11.5).

Before moving on to the analyses for this chapter, I consider it 
important to alert you to a couple of additional considerations related 
to the specification of LGC models. As is typical for these models, 
you will likely want to orient your page setup to landscape mode. 
Implementation of this reorientation is accomplished via the Interface 

Figure 11.5 AMOS Graphics: Object Properties dialog box showing labeling 
orientation.
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Properties dialog box as illustrated in Figure 11.6; its selection is made 
from the View drop-down menu.

In addition, I also want to draw your attention to an annoying 
error message which I have encountered on numerous occasions using 
AMOS Graphics. Hopefully, my notation here will prevent you from 
experiencing the same problem. Specifically, this error warning is trig-
gered when a variable name in the data set differs in any way from the 
variable name noted in the Object Properties dialog box; even differences 
involving a space between characters can spark this error message! The 
variable label (i.e., shown on the model diagram), however, can be differ-
ent. For example, the variable representing the Time 1 score for perceived 
math ability is shown as m_abils in the SPSS data file, but is labeled as 
Math Ability in the model (Figure 11.1). This error message and specifi-
cation of name/label designation are illustrated in Figures 11.7 and 11.8, 
respectively.

Following this extended but nonetheless essential overview of the 
modeling and testing of LGC models using AMOS Graphics, we are now 
ready to examine their results. We turn first to results related to the initial 
test of our hypothesized model (see Figure 11.1).

Figure 11.6 AMOS Graphics: Interface Properties dialog box showing page orienta-
tion with landscape mode selected.
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Selected AMOS output: Hypothesized model

Of prime importance in testing this first model are the extent to which it fits 
the data and the extent to which it may need some modification. We turn first 
to the goodness-of-fit statistics reported in Table 11.1. Of key concern here is 
the obviously poor fit of the model as indicated by the CFI value of .811 and 
the RMSEA value of .172. Clearly this model is misspecified in a very major 
way. For answers to this substantial misspecification, let’s review the modi-
fication indices, which are reported in Table 11.2. Of primary interest are 
misspecification statistics associated with the two Intercept and two Slope 
Factors, which have been highlighted within the broken-line rectangle.

In reviewing these modification indices, we see that not including a 
covariance between the Math Ability and Science Ability Intercept fac-
tors is accounting for the bulk of the misspecification. Given the fairly 

Figure 11.7 AMOS Graphics: Error message advising of mismatch of variable 
name between data and program files.

Figure 11.8 AMOS Graphics: Object Properties dialog box showing difference 
between variable name and label.
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substantial modification indices associated with the remaining three 
factor covariances, together with Willet and Sayer’s (1996) caveat that, in 
multiple-domain LGC models, covariation among the growth parameters 
across domains should be considered, I respecified a second model (Model 
2) in which all four factor covariances were specified; these results, as they 
relate to the parameter estimates, are reported in Table 11.3.

Although goodness-of-fit results pertinent to Model 2 were substantially 
improved (χ2

(7)  = 32.338; CFI  = .971; RMSEA  = .085), a review of the estimates 
related to these factor covariances reveals only three to be statistically sig-
nificant and, thus, worthy of incorporation into the final model. Specifically, 
results revealed the covariance between the Math and Science Ability 
Intercept factors and their related Slope factors to be important parameters 
in the model. In addition, given a probability value <  .05 for the covariance 
between the Math Ability Intercept and the Science Ability Slope, I considered 
it important also to include this parameter in the final model. The remaining 
three statistically nonsignificant factor covariances were deleted from the 
model. This final model (Model 3) is shown schematically in Figure 11.9.

Of substantial interest in our review of results pertinent to this model 
is what a difference the incorporation of two additional factor covariances 
can make! As shown in Table 11.4, we now find a nice well-fitting model 

Table 11.1 Selected AMOS Output: Goodness-of-Fit Statistics Related to 
Hypothesized Model

Model fit summary

CMIN

Model NPAR CMIN DF P
CMIN/

DF

Default model 16 173.461 11 .000 15.769
Saturated model 27 .000 0
Independence model 12 875.915 15 .000 58.394

Baseline comparisons

Model NFIDelta1 RFI rho1 IFI Delta2 TLI rho2 CFI
Default model .802 .730 .812 .743 .811
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Default model .172 .150 .195 .000
Independence model .339 .320 .358 .000
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Table 11.3 Selected AMOS Output: Parameter Estimates Related to Model 2

Estimate S.E. C.R. P

Covariances
Math_Intercept <--> Math_Slope –.228 .073 –3.107 .002
Science Intercept <--> Science_Slope –.055 .063 –.875 .382
Math_Slope <--> Science_Slope .078 .022 3.544 ***
Math_Slope <--> Science Intercept –.070 .037 –1.877 .061
Math_Intercept <--> Science_Slope –.028 .038 –.754 .451
Math_Intercept <--> Science Intercept .536 .068 7.857 ***

Correlations
Math_Intercept <--> Math_Slope –.442
Science Intercept <--> Science_Slope –.184
Math_Slope <--> Science_Slope .475
Math_Slope <--> Science Intercept –.181
Math_Intercept <--> Science_Slope –.071
Math_Intercept <--> Science Intercept .573

Table 11.2 Selected AMOS Output: Modification Indices Related to 
Hypothesized Model

Covariances M.I. Par Change

Math_Slope <--> Science_Slope 30.836 .091
Math_Slope <--> Science Intercept 22.333 .131
Math_Intercept<--> Science_Slope 41.731 .182
Math_Intercept<--> Science Intercept 110.419 .503
E6 <--> Math_Slope 8.320 .085
E6 <--> Math_Intercept 10.448 .164
E5 <--> Math_Slope 17.485 .122
E5 <--> Math_Intercept 26.093 .256
E4 <--> Math_Slope 4.634 –.065
E4 <--> Math_Intercept 7.971 .147
E3 <--> Science_Slope 20.103 .146
E3 <--> Science Intercept 6.172 .137
E3 <--> E6 13.781 .217
E2 <--> Science Intercept 11.139 .139
E2 <--> E5 28.126 .232
E1 <--> Science Intercept 15.117 .160
E1 <--> E4 18.549 .193
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Figure 11.9 Final LGC model: No predictor.

Table 11.4 Selected AMOS Output: Goodness-of-Fit Statistics  
Related to Model 3

Model fit summary

CMIN

Model NPAR CMIN DF P CMIN/DF

Default model 17 36.265 10 .000 3.626
Saturated model 27 .000 0
Independence model 12 875.915 15 .000 58.394

Baseline comparisons

Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI

Default model .959 .938 .970 .954 .969
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA
Model RMSEA LO 90 HI 90 PCLOSE
Default model .073 .048 .099 .064
Independence model .339 .320 .358 .000
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with related fit statistics of χ2
(10) = 32.338, CFI = .969, and RMSEA = .073. 

Having now determined a well-fitting model, we are ready to review the 
substantive results of the analysis. Both the unstandardized and stan-
dardized parameter estimates are reported in Table 11.5.

Table 11.5 Selected AMOS Output: Parameter Estimates Related to Model 3

Estimate S.E. C.R. P

Regression weights
m_abils1 <--- Math_Intercept 1.000
m_abils1 <--- Math_Slope .000
m_abils2 <--- Math_Intercept 1.000
m_abils2 <--- Math_Slope 1.000
m_abils3 <--- Math_Intercept 1.000
m_abils3 <--- Math_Slope 2.000
s_abils1 <--- Science Intercept 1.000
s_abils1 <--- Science_Slope .000
s_abils2 <--- Science Intercept 1.000
s_abils2 <--- Science_Slope 1.000
s_abils3 <--- Science Intercept 1.000
s_abils3 <--- Science_Slope 2.000

Standardized regression weights
m_abils1 <--- Math_Intercept .897
m_abils1 <--- Math_Slope .000
m_abils2 <--- Math_Intercept .843
m_abils2 <--- Math_Slope .351
m_abils3 <--- Math_Intercept .729
m_abils3 <--- Math_Slope .606
s_abils1 <--- Science Intercept .656
s_abils1 <--- Science_Slope .000
s_abils2 <--- Science Intercept .648
s_abils2 <--- Science_Slope .245
s_abils3 <--- Science Intercept .625
s_abils3 <--- Science_Slope .474

Means
Math_Intercept 5.118 .055 93.529 ***

Math_Slope –.162 .032 –5.064 ***

Science Intercept 4.763 .051 93.036 ***

Science_Slope .122 .030 4.073 ***

(continued)
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Given that the regression weights represented only fixed parameters, 
there is little of interest in this section. Of major importance, however, 
are the estimates reported in the remaining sections of the output file. 
Turning first to the Means estimates, we see that these parameters for 
both the Intercepts and Slopes were statistically significant. Specifically, 
findings reveal the average score for perceived science ability (4.763) to be 
slightly lower than for perceived math ability (5.118). However, whereas 
adolescents’ average self-perceived Math Ability scores decreased over 
a 3-year period from grade 8 to grade 10 (as indicated by the a value of 
–0.162), those related to self-perceived Science Ability increased (0.122).

Let’s turn now to the factor covariances, reviewing first the within- domain 
covariance, that is to say, the covariance between the intercept and slope 
related to the same construct. Here, we find the estimated covariance between 
the Intercept and Slope factors for Math Ability to be statistically significant 
(p  < .05). The negative estimate of –.205 suggests that adolescents whose self-
perceived scores in math ability were high in grade 8 demonstrated a lower 

Table 11.5 Selected AMOS Output: Parameter Estimates Related to Model 3 
(Continued)

Estimate S.E. C.R. P

Covariances
Math_Intercept <--> Math_Slope –.205 .072 –2.856 .004
Math_Slope <--> Science_Slope .056 .017 3.217 .001
Math_Intercept <--> Science Intercept .480 .054 8.814 ***

Correlations
Math_Intercept <--> Math_Slope –.403
Math_Slope <--> Science_Slope .404
Math_Intercept <--> Science Intercept .548

Variances
Math_Intercept 1.220 .128 9.517 ***
Math_Slope .211 .058 3.638 ***
Science Intercept .628 .064 9.742 ***
Science_Slope .090 .031 2.909 .004
E2 .694 .062 11.124 ***
E3 1.053 .135 7.820 ***
E4 .831 .071 11.768 ***
E5 .779 .064 12.185 ***
E6 .619 .102 6.062 ***
E1 .295 .104 2.851 .004

*** probability < .000
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rate of increase in these scores over the 3-year period from grade 8 through 
grade 10 than was the case for adolescents whose self-perceived math ability 
scores were lower at Time 1. In other words, grade 8 students who perceived 
themselves as being less able in math than their peers made the greater 
gains. A negative correlation between initial status and possible gain is an 
old phenomenon in psychology known as the law of initial values.

Turning to the first between-domain covariance shown in the output 
(Math Slope/Science Slope), we see that although statistically significant, 
this reported value is very small (.056). Nonetheless, a review of the stan-
dardized coefficients shows this correlation (r = .404), as for the other two 
covariances, to be moderately high. This result indicates that as growth 
in adolescents’ perceptions of their math ability from grades 8 through 
10 undergoes a moderate increase, so also do their perceptions of science 
ability. Finally, the fairly strong correlation between intercepts related to 
math and science ability (r  = .548) indicate that for adolescents perceiving 
themselves as having high ability in math, they also view themselves con-
comitantly as having high ability in science.

Finally, turning to the Variance section of the output file, we note that, 
importantly, all estimates related to the intercept and slope for each perceived 
ability domain are statistically significant (p  < .05). These findings reveal strong 
interindividual differences in both the initial scores of perceived ability in 
math and science at Time 1, and in their change over time, as the adolescents 
progressed from grade 8 through grade 10. Such evidence of interindividual 
differences provides powerful support for further investigation of variability 
related to the growth trajectories. In particular, the incorporation of predic-
tors into the model can serve to explain their variability. Of somewhat less 
importance substantively, albeit important methodologically, all random 
measurement error terms are also statistically significant (p  < .05).

Testing latent growth curve models: Gender 
as a time-invariant predictor of change

As noted earlier, provided with evidence of interindividual differ-
ences, we can then ask whether, and to what extent, one or more pre-
dictors might explain this heterogeneity. For our purposes here, we ask 
whether statistically significant heterogeneity in the individual growth 
trajectories (i.e., intercept and slope) of perceived ability in math and sci-
ence can be explained by gender as a time-invariant predictor of change. 
As such, two questions that we might ask are “Do self-perceptions of 
ability in math and science differ for adolescent boys and girls at Time 1 
(grade 8)?” and “Does the rate at which self-perceived ability in math and 
science change over time differ for adolescent boys and girls?” To answer 
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these questions, the predictor variable gender must be incorporated into 
the Level 2 (or structural) part of the model. This predictor model repre-
sents an extension of our final, best fitting multiple domain model (Model 
3) and is shown schematically in Figure 11.10.

Of import regarding the path diagram displayed in Figure 11.10 is 
the addition of four new model components. First, note the four regres-
sion paths that flow from the variable of gender to the Intercept and Slope 
factors associated with each of the math and science ability domains. 
These regression paths are of primary interest in this predictor model as 
they hold the key in answering the question of whether the trajectory of 
Perceived Ability in Math and Perceived Ability in Science differs for ado-
lescent boys and girls. Second, there is now a latent residual associated 
with each of the Intercept and Slope factors (D1 to D4). This addition is 
a necessary requirement as these factors are now dependent variables 
in the model due to the regression paths generated from the predictor 
variable of gender. Because the variance of dependent variables cannot 
be estimated in SEM, the latent factor residuals serve as proxies for the 
Intercept and Slope factors in capturing these variances. These residuals 
now represent variation remaining in the Intercepts and Slopes after all 
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Figure 11.10 Hypothesized LGC model with gender as a predictor.
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variability in their prediction by gender has been explained (Willett & 
Keiley, 2000). Rephrased within a comparative framework, we note that 
for the dual-domain model in which no predictors were specified, the 
residuals represented deviations between the factor Intercepts and Slopes, 
and their population means. In contrast, for this current model in which 
a predictor variable is specified, the residual variances represent devia-
tions from their conditional population means. As such, these residuals 
represent the adjusted values of factor Intercepts and Slopes after partial-
ing out the linear effect of the gender predictor variable (Willett & Keiley, 
2000). Third, given that the four factors are now dependent variables in the 
model, they and their covariances are no longer estimable parameters in 
the model. Thus, the double-headed arrows representing the factor cova-
riances are now shown linking their associated residuals rather than the 
factors themselves. Finally, the means of the residuals are fixed to 0.0, as 
indicated by the assigned 0 followed by a comma.

Let’s turn now to the goodness-of-fit findings resulting from the test 
of this predictor model as summarized in Table 11.6. Interestingly, here 
we find evidence of an extremely well-fitting model that is even  better fit-
ting than the final LGC model having no predictor variable (χ2

(12) = 35.887; 
CFI = .973; RMSEA = .063).

Parameter estimates related to this predictor model are presented in 
Table 11.7. However, because the content of major import related to this 

Table 11.6 Selected AMOS Output: Goodness-of-Fit Statistics 
Related to Predictor Model

Model NPAR CMIN DF P CMIN/DF
Default model 23 35.877 12 .000 2.990
Saturated model 35 .000 0
Independence model 14 903.439 21 .000 43.021

Baseline comparisons

Model NFI Delta1 RFI rho1 IFI Delta2 TLI rho2 CFI
Default model .960 .931 .973 .953 .973
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE
Default model .063 .040 .087 .162
Independence model .290 .274 .307 .000
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Table 11.7 Selected AMOS Output: Parameter  
Estimates Related to Predictor Model

Estimate S.E. C.R. P

Regression weights

Science Intercept <--- sex .226 .102 2.222 .026
Science_Slope <--- sex .017 .060 .287 .774
Math_Slope <--- sex –.150 .064 –2.345 .019
Math_Intercept <--- sex .563 .107 5.269 ***
m_abils1 <--- Math_Slope .000
m_abils2 <--- Math_Intercept 1.000
m_abils2 <--- Math_Slope 1.000
m_abils3 <--- Math_Intercept 1.000
m_abils3 <--- Math_Slope 2.000
s_abils1 <--- Science Intercept 1.000
s_abils1 <--- Science_Slope .000
s_abils2 <--- Science Intercept 1.000
s_abils2 <--- Science_Slope 1.000
s_abils3 <--- Science Intercept 1.000
s_abils3 <--- Science_Slope 2.000
m_abils1 <--- Math_Intercept 1.000

Standardized regression weights
Science Intercept <--- Sex .143
Science_Slope <--- Sex .029
Math_Slope <--- Sex –.163
Math_Intercept <--- Sex .254
m_abils1 <--- Math_Slope .000
m_abils2 <--- Math_Intercept .845
m_abils2 <--- Math_Slope .350
m_abils3 <--- Math_Intercept .732
m_abils3 <--- Math_Slope .606
s_abils1 <--- Science Intercept .656
s_abils1 <--- Science_Slope .000
s_abils2 <--- Science Intercept .646
s_abils2 <--- Science_Slope .246
s_abils3 <--- Science Intercept .623
s_abils3 <--- Science_Slope .475
m_abils1 <--- Math_Intercept .897
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model focuses on the variable of gender, the results presented are pertinent 
only to the related regression paths and their weights.4 Turning first to 
results for perceived math ability, we see that gender was found to be a statis-
tically significant predictor of both initial status (.563) and rate of change 
(–.150) at p  < .05. Given a coding of “0” for females and “1” for males, these 
findings suggest that, whereas self-perceived ability in math was, on aver-
age, higher for boys than for girls by a value of .563 at Time 1, the rate of 
change in this perception for boys, from grade 8 through grade 10, was 
slower than it was for girls by a value of .150. (The negative coefficient 
indicates that boys had the lower slope.)

Results related to perceived science ability again revealed gender to be a 
significant predictor of perceived science ability in grade 8, with boys show-
ing higher scores on average than girls by a value of .226 (p  < .05). On the 
other hand, rate of change was found to be indistinguishable between 
boys and girls as indicated by its nonsignificant estimate.

To conclude, I draw from the work of Willett and Sayer (1994, 1996) 
in highlighting several important features captured by the LGC mod-
eling approach to the investigation of change. First, the methodology 
can accommodate anywhere from 3 to 30 waves of longitudinal data 
equally well. Willett (1988, 1989) has shown, however, that the more 
waves of data collected, the more precise will be the estimated growth 
trajectory and the higher will be the reliability for the measurement 
of change. Second, there is no requirement that the time lag between 
each wave of assessments be equivalent. Indeed, LGC modeling can 
easily accommodate irregularly spaced measurements, but with the 
caveat that all subjects are measured on the same set of occasions. 
Third, individual change can be represented by either a linear or a non-
linear growth trajectory. Although linear growth is typically assumed 
by default, this assumption is easily tested and the model respecified 
to address curvilinearity if need be. Fourth, in contrast to traditional 
methods used in measuring change, LGC models allow not only for 
the estimation of measurement error variances but also for their auto-
correlation and fluctuation across time in the event that tests for the 
assumptions of independence and homoscedasticity are found to be 
untenable. Fifth, multiple predictors of change can be included in the 
LGC model. They may be fixed, as in the specification of gender in the 
present chapter, or they may be time varying (see, e.g., Byrne, 2008; 
Willett & Keiley, 2000). Finally, the three key statistical assumptions 
associated with our application of LGC modeling (linearity, indepen-
dence of measurement error variances, and homoscedasticity of mea-
surement error variances), although not demonstrated in this chapter, 
can be easily tested via a comparison of nested models (see Byrne & 
Crombie, 2003).
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In closing out this chapter on LGC modeling, I wish to make you 
aware that multilevel models provide an alternative way to study change 
with structural models (see, e.g., Bovaird, 2007; Duncan et al., 2006; Singer 
& Willett, 2003).

Endnotes
 1. Group 1 (n  = 500) represented subjects for whom complete data were avail-

able across the 3-year time span, Group 2 (n  = 543) represented subjects for 
whom data were available only for Years 2 and 3, and Group 3 (n  = 601) rep-
resented subjects for whom data were available only for Year 1 of the study.

 2. In the present case, however, the same pattern of results replicate those based 
on the multigroup missing data model.

 3. If, on the other hand, the growth trajectory were considered to be nonlinear, 
the hypothesized model would then include a third parameter representing 
curvature (for an elaboration of this parameterization, see Byrne & Crombie, 
2003; Duncan et al., 1999). Fitting a nonlinear model such as a polynomial 
model requires more time points of measurement (see Bentler, 2005).

 4. As noted earlier in this chapter, it is essential that the variable names in the 
data set be consistent with those named for analysis by the AMOS program. 
Thus, although the variable was labeled gender in the figure, the name of the 
variable in the data set (and for the analysis) was sex.
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Bootstrapping as an aid 
to nonnormal data
Two critically important assumptions associated with structural equa-
tion modeling (SEM), in the analysis of covariance and mean structures, 
is the requirement that the data are of a continuous scale and have a mul-
tivariate normal distribution. These underlying assumptions are linked 
to large-sample (i.e., asymptotic) theory within which SEM is embedded. 
More specifically, they derive from the approach taken in the estimation 
of parameters using the SEM methodology. Typically, either maximum 
likelihood (ML) or normal theory generalized least squares (GLS) estima-
tion is used; both demand that the data be continuous and multivariate 
normal. This chapter focuses on the issue of multivariate nonnormality; 
readers interested in the issue of noncontinuous variables are referred to 
Bollen (1989a); Byrne (1998); Coenders, Satorra, and Saris (1997); and West, 
Finch, and Curran (1995).

Despite its import for all parametric statistical analyses, a review of 
the literature provides ample evidence of empirical research wherein the 
issue of distributional normality has been blatantly ignored. For example, 
in an analysis of 440 achievement and psychometric data sets, all of which 
exceeded a sample size of 400, Micceri (1989) reported that the majority 
of these data failed to follow either a univariate or multivariate normal 
distribution. Furthermore, he found that most researchers seemed to be 
totally oblivious to the fact that they had even violated this statistical 
assumption (see also Zhu, 1997). Within the more limited context of the 
SEM literature, it is easy to find evidence of the same phenomenon. As 
a case in point, we can turn to Breckler (1990), who identified 72 articles 
appearing in personality and social psychology journals between the 
years 1977 and 1987 that employed the SEM methodology. His review of 
these published studies revealed that only 19% actually acknowledged 
the normal theory assumptions, and fewer than 10% explicitly tested for 
their possible violation.

Following a review of empirical studies of nonnormality in SEM, 
West et al. (1995) summarized four important findings. First, as data 
become increasingly nonnormal, the χ2 value derived from both ML 
and GLS estimation becomes excessively large. The consequence of this 
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situation is that it encourages researchers to seek further modification of 
their hypothesized model in an effort to attain adequate fit to the data. 
However, given the spuriously high value of the χ2 value, these efforts 
can lead to inappropriate and nonreplicable modifications to otherwise 
theoretically adequate models (see also Lei & Lomax, 2005; MacCallum, 
Roznowski, & Necowitz, 1992). Second, when sample sizes are small (even 
in the event of multivariate normality), both the ML and GLS estima-
tors yield χ2 values that are somewhat inflated. Furthermore, as sample 
size decreases; and nonnormality increases, researchers are faced with a 
growing proportion of analyses that fail to converge, or that result in an 
improper solution (see Anderson & Gerbing, 1984; Boomsma, 1982). Third, 
when data are nonnormal, fit indices such as the Tucker-Lewis Index (TLI; 
Tucker & Lewis, 1973) and the Comparative Fit Index (CFI; Bentler, 1990) 
yield values that are modestly underestimated (see also Marsh, Balla, & 
McDonald, 1988). Finally, nonnormality can lead to spuriously low stan-
dard errors, with degrees of underestimation ranging from moderate to 
severe. The consequences here are that, because the standard errors are 
underestimated, the regression paths and factor/error covariances will be 
statistically significant, although they may not be so in the population.

Given that, in practice, most data fail to meet the assumption of multi-
variate normality, West et al. (1995) noted increasing interest among SEM 
researchers in (a) establishing the robustness of SEM to violations of the 
normality assumption, and (b) developing alternative reparatory strate-
gies when this assumption is violated. Particularly troublesome in SEM 
analyses is the presence of excessive kurtosis (see, e.g., Bollen & Stine, 
1993; West et al.). In a very clearly presented review of both the problems 
encountered in working with multivariate nonnormal data in SEM, and 
the diverse remedial options proposed for their resolution, West and col-
leagues have provided the reader with a solid framework within which 
to comprehend the difficulties that arise. I highly recommend their book 
chapter to all SEM researchers, albeit with double emphasis for those who 
may be new to this methodology.

One approach to handling the presence of multivariate nonnormal 
data is to use a procedure known as “the bootstrap” (West et al., 1995; 
Yung & Bentler, 1996; Zhu, 1997). This technique was first brought to light 
by Efron (1979, 1982) and has been subsequently highlighted by Kotz and 
Johnson (1992) as having had a significant impact on the field of statistics. 
The term bootstrap derives from the expression “to pull oneself up by the 
bootstraps,” thereby reflecting the notion that the original sample gives 
rise to multiple additional ones. As such, bootstrapping serves as a resam-
pling procedure by which the original sample is considered to represent 
the population. Multiple subsamples of the same size as the parent sam-
ple are then drawn randomly, with replacement, from this population and 
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provide the data for empirical investigation of the variability of parameter 
estimates and indices of fit. For very comprehensible introductions to the 
underlying rationale and operation of bootstrapping, readers are referred 
to Diaconis and Efron (1983), Stine (1990), and Zhu (1997).

Prior to the advent of high-speed computers, the technique of boot-
strapping could not have existed (Efron, 1979). In fact, it is for this very 
reason that bootstrapping has been categorized as a computer-intensive 
statistical procedure in the literature (see, e.g., Diaconis & Efron, 1983; 
Noreen, 1989). Computer-intensive techniques share the appealing fea-
ture of being free from two constraining statistical assumptions gener-
ally associated with the analysis of data: (a) that the data are normally 
distributed, and (b) that the researcher is able to explore more complicated 
problems, using a wider array of statistical tools than was previously pos-
sible (Diaconis & Efron). Before turning to our example application in this 
chapter, let’s review, first, the basic principles associated with the boot-
strap technique, its major benefits and limitations, and, finally, some cave-
ats bearing on its use in SEM.

Basic principles underlying the bootstrap procedure
The key idea underlying the bootstrap technique is that it enables the 
researcher to create multiple subsamples from an original database. The 
importance of this action is that one can then examine parameter distribu-
tions relative to each of these spawned samples. Considered cumulatively, 
these distributions serve as a bootstrap sampling distribution which 
technically operates in the same way as does the sampling distribution 
generally associated with parametric inferential statistics. In contrast to 
traditional statistical methods, however, the bootstrapping sampling dis-
tribution is concrete and allows for comparison of parametric values over 
repeated samples that have been drawn (with replacement) from the origi-
nal sample. With traditional inferential procedures, on the other hand, 
comparison is based on an infinite number of samples drawn hypotheti-
cally from the population of interest. Of import here is the fact that the 
sampling distribution of the inferential approach is based on available 
analytic formulas which are linked to assumptions of normality, whereas 
the bootstrap sampling distribution is rendered free from such restric-
tions (Zhu, 1997).

To give you a general flavor of how the bootstrapping strategy oper-
ates in practice, let’s examine a very simple example. Suppose that we have 
an original sample of 350 cases; the computed mean on variable X is found 
to be 8.0, with a standard error of 2.5. Then, suppose that we have the 
computer generate 200 samples consisting of 350 cases each by randomly 
selecting cases with replacement from the original sample. For each of these 
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subsamples, the computer will record a mean value, compute the average 
mean value across the 200 samples, and calculate the standard error.

Within the framework of SEM, the same procedure holds, albeit one 
can evaluate the stability of model parameters, and a wide variety of 
other estimated quantities (Kline, 2005; Stine, 1990; Yung & Bentler, 1996). 
Furthermore, depending on the bootstrapping capabilities of the par-
ticular computer program in use, one may also test for the stability of 
goodness-of-fit indices relative to the model as a whole (Bollen & Stine, 
1993; Kline, 2005); AMOS can provide this information. (For an evalua-
tive review of the application and results of bootstrapping to SEM models, 
readers are referred to Yung and Bentler, 1996.)

Benefits and limitations of the bootstrap procedure

The primary advantage of bootstrapping, in general, is that it allows 
the researcher to assess the stability of parameter estimates and thereby 
report their values with a greater degree of accuracy. As Zhu (1997) noted, 
in implied reference to the traditional parametric approach, “[I]t may be 
better to draw conclusions about the parameters of a population strictly 
from the sample at hand…  than to make perhaps unrealistic assump-
tions about the population” (p. 50). Within the more specific context of 
SEM, the bootstrap procedure provides a mechanism for addressing situ-
ations where the ponderous statistical assumptions of large sample size 
and multivariate normality may not hold (Yung & Bentler, 1996). Perhaps 
the strongest advantage of bootstrapping in SEM is “its ‘automatic’ refine-
ment on standard asymptotic theories (e.g., higher-order accuracy) so that 
the bootstrap can be applied even for samples with moderate (but not 
extremely small) sizes” (Yung & Bentler, 1996, p. 223).

These benefits notwithstanding, the bootstrap procedure is not with-
out its limitations and difficulties. Of primary interest are four such limi-
tations. First, the bootstrap sampling distribution is generated from one 
“original” sample which is assumed to be representative of the popula-
tion. In the event that such representation is not forthcoming, the boot-
strap procedure will lead to misleading results (Zhu, 1997). Second, Yung 
and Bentler (1996) have noted that, in order for the bootstrap to work 
within the framework of covariance structure analysis, the assumption 
of independence and identical distribution of observations must be met. 
They contended that such an assumption is intrinsic to any justification of 
replacement sampling from the reproduced correlation matrix of the boot-
strap. Third, the success of a bootstrap analysis depends on the degree to 
which the sampling behavior of the statistic of interest is consistent when 
the samples are drawn from the empirical distribution, and when they are 
drawn from the original population (Bollen & Stine, 1993). Finally, when 
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data are multivariate normal, the bootstrap standard error estimates have 
been found to be more biased than those derived from the standard ML 
method (Ichikawa & Konishi, 1995). In contrast, when the underlying dis-
tribution is nonnormal, the bootstrap estimates are less biased than they 
are for the standard ML estimates.

Caveats regarding the use of bootstrapping in SEM

Although the bootstrap procedure is recommended for SEM as an approach 
to dealing with data that are multivariate nonnormal, it is important that 
researchers be cognizant of its limitations in this regard, as well as its use 
in addressing issues of small sample size and lack of independent samples 
for replication (Kline, 2005). Findings from Monte Carlo simulation stud-
ies of the bootstrap procedures have led researchers to issue several cave-
ats regarding its use. Foremost among such caveats is Yung and Bentler’s 
(1996) admonition that bootstrapping is definitely not a panacea for small 
samples. Because the bootstrap sample distributions depend heavily on 
the accuracy of estimates based on the parent distribution, it seems evi-
dent that such precision can only derive from a sample that is at least 
moderately large (see Ichikawa & Konishi, 1995; Yung & Bentler, 1994).

A second caveat addresses the adequacy of standard errors derived 
from bootstrapping. Yung and Bentler (1996) exhorted that, although the 
bootstrap procedure is helpful in estimating standard errors in the face 
of nonnormal data, it should not be regarded as the absolutely only and 
best method. They noted that researchers may wish to achieve particular 
statistical properties such as efficiency, robustness, and the like, and thus 
may prefer using an alternate estimation procedure.

As a third caveat, Yung and Bentler (1996) cautioned research-
ers against using the bootstrap procedure with the naïve belief that the 
results will be accurate and trustworthy. They pointed to the studies of 
Bollen and Stine (1988, 1993) in noting that, indeed, there are situations 
where bootstrapping simply will not work. The primary difficulty here, 
however, is that there is yet no way of pinpointing when and how the 
bootstrap procedure will fail. In the interim, we must await further devel-
opments in this area of SEM research.

Finally, Arbuckle (2007) admonished that when bootstrapping is used 
to generate empirical standard errors for parameters of interest in SEM, it 
is critical that the researcher constrain to some nonzero value, one factor 
loading path per factor, rather than the factor variance in the process of 
establishing model identification. Hancock and Nevitt (1999) have shown 
that constraining factor variances to a fixed value of 1.0, in lieu of one fac-
tor loading per congeneric set of indicators, leads to bootstrap standard 
errors that are highly inflated.
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At this point, hopefully you have at least a good general idea of the 
use of bootstrapping within the framework of SEM analyses. With this 
background information in place, then, let’s move on to an actual applica-
tion of the bootstrap procedure.

Modeling with AMOS Graphics
When conducting the bootstrap procedure using AMOS Graphics, the 
researcher is provided with one set of parameter estimates, albeit two 
sets of their related standard errors. The first set of estimates is part of 
the regular AMOS output when ML or GLS estimation is requested. The 
calculation of these standard errors is based on formulas that assume a 
multivariate normal distribution of the data. The second set of estimates 
derives from the bootstrap samples and, thus, is empirically determined. 
The advantage of bootstrapping, as discussed above, is that it can be used 
to generate an approximate standard error for many statistics that AMOS 
computes, albeit without having to satisfy the assumption of multivariate 
normality. It is with this beneficial feature in mind that we review the 
present application.

The hypothesized model

The model to be used in demonstrating the bootstrap procedure repre-
sents a second-order CFA model akin to the one presented in Chapter 5 
in that it also represents the Beck Depression Inventory (BDI). However, 
whereas analyses conducted in Chapter 5 were based on the revised 
version of the BDI (Beck, Steer, & Brown, 1996), those conducted in this 
chapter are based on the original version of the instrument (Beck, Ward, 
Mendelson, Mock, & Erbaugh, 1961). The sample data used in the cur-
rent chapter represent item scores for 1,096 Swedish adolescents. The pur-
pose of the original study from which this application is taken was to 
demonstrate the extent to which item score data can vary across culture 
despite baseline models that (except for two correlated errors) were struc-
turally equivalent (see Byrne & Campbell, 1999). Although data pertinent 
to Canadian (n = 658) and Bulgarian (n = 691) adolescents were included 
in the original study, we focus our attention on only the Swedish group in 
the present chapter. In particular, we examine bootstrap samples related 
to the final baseline model for Swedish adolescents, which is displayed in 
Figure 12.1. Of particular note, over and above the factor-loading pattern 
of BDI items on Negative Attitude, Performance Difficulty, and Somatic 
Elements in formulating the originally hypothesized CFA model, are the 
additional parameterizations resulting from establishment of this base-
line model presented here. These modifications include the two correlated 
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Figure 12.1 Final model of BDI structure for Swedish adolescents.
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errors (Items 16/17; Items 18/19) and equality constraints on the three 
error residuals as indicated by assignment of the same label (var_a) to 
these parameters.

Characteristics of the sample

Of import in this bootstrapping example is that despite the adequately 
large size of the Swedish sample, the data are severely nonnormally dis-
tributed. Univariate skewness (SK) values ranged from 0.784 to 5.381, 
with a mean SK of 2.603; univariate kurtosis (KU) values ranged from 
0.794 to 32.971, with a mean KU of 8.537. From a multivariate perspec-
tive, Mardia’s (1970, 1974) normalized estimate of multivariate kurtosis 
was found to be 549.848. Based on a very large sample that is multivari-
ate normal, this estimate is distributed as a unit normal variate (Bentler, 
2005). Thus, when estimated values are large, they indicate significant 
positive kurtosis. Indeed, Bentler (2005) has suggested that in practice, 
values > 5.00 are indicative of data that are nonnormally distributed. 
Recall from the discussion of nonnormality in Chapter 4 that in AMOS, 
the critical ratio can be considered to represent Mardia’s normalized esti-
mate, although it is not explicitly labeled as such (J. L. Arbuckle, personal 
communication, March 2008). Given a normalized Mardia estimated 
value of 549.848, then, there is no question that the data clearly are not 
multivariate normal.

Applying the bootstrap procedure

Application of the bootstrap procedure, using AMOS, is very easy and 
straightforward. With the model shown in Figure 12.1 open, all that is 
needed is to access the Analysis Properties dialog box, either from the pull-
down menu or by clicking on its related icon . Once this dialog box has 
been opened, you simply select the Bootstrap tab shown encircled in 
Figure 12.2. Noting the checked boxes, you will see that I have requested 
AMOS to perform a bootstrap on 500 samples using the ML estimator, 
and to provide bias-corrected confidence intervals for each of the param-
eter bootstrap estimates; the 90% level is default. As you can readily see in 
Figure 12.2, the program provides the researcher with several choices 
regarding estimators in addition to options related to (a) Monte Carlo 
bootstrapping, (b) details related to each bootstrap sample, (c) use of the 
Bollen-Stine bootstrap, and (d) adjusting the speed of the bootstrap algo-
rithm via the Bootfactor.

Once you have made your selections on the Bootstrap tab, you are 
ready to execute the job. Selecting Calculate Estimates either from the Model 

RT63727.indb   336 7/6/09   7:27:45 PM



Chapter twelve: Bootstrapping as an aid to nonnormal data 337

Fit pull-down menu or by clicking on the icon  sets the bootstrapping 
action in motion. Figure 12.3 shows the AMOS Output file directory tree 
that appears once the execution has been completed. In reviewing this set 
of output sections, it is worth noting the separation of the usual model 
information (upper section) and the bootstrap information (lower section). 
As can be seen in the summary notes presented in Figure 12.4, there were 
no estimation problems (minimum was achieved), and the χ2 value is 
reported as 717.169, with 186 degrees of freedom.

Selected AMOS output
We now review various components of the AMOS text output, turning 
first to the parameter summary, which is presented in Figure 12.5.

Parameter summary

Although, by now, you will likely have no difficulty interpreting the 
Summary of Parameters, I would like to draw your attention to the three 

Figure 12.2 AMOS Graphics: Available bootstrap options within the Analysis 
Properties dialog box.
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labeled parameters listed in the Variances column. These variances pertain 
to the three residual errors which, as in Chapter 5, were constrained to be 
equal.1 For safe measure, let’s review the last column, which reports the 
total number of fixed, labeled, and unlabeled parameters in the model. 
Details related to the remainder of this summary are as follows:

28 fixed parameters: 21 regression paths (or weights) associated with •	
the measurement error terms, 3 associated with the residual terms, 
and 3 associated with the first factor loading of each congeneric set 
of indicator measures; 1 variance fixed to 1.0 associated with the 
higher order factor

Figure 12.3 AMOS Graphics: Output directory tree.
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44 unlabeled (estimated) parameters: 21 factor loadings (18 first order; •	
3 second order), 2 covariances (2 correlated errors), and 21 variances 
(measurement error terms)

Assessment of normality

Given the extreme nonnormality of these data, I consider it important that 
you have the opportunity to review this information as reported in the 
output file. This information is accessed by checking the Normality/Outliers 
option found on the Estimation tab of the Analysis Properties dialog box (see 
Chapter 4). As indicated by the labeling of this option, AMOS presents 

Figure 12.4 AMOS Graphics: Summary notes related to CFA analysis of hypoth-
esized model structure.

Figure 12.5 AMOS Graphics: Parameter summary related to hypothesized model 
of BDI structure.
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information related to the normality of the data from two perspectives—
one indicative of the skewness and kurtosis of each parameter, the other of 
the presence of outliers. We turn first to the skewness and kurtosis issue.

Statistical evidence of nonnormality
Although this information was summarized above, the output presented 
in Table 12.1 enables you to review skewness and kurtosis values related 
to each BDI item. As noted earlier, the multivariate value of 549.848 repre-
sents Mardia’s (1970) coefficient of multivariate kurtosis, the critical ratio 
of which is 292.839.

Statistical evidence of outliers
In addition to statistical information related to skewness and kurtosis, 
AMOS provides information related to possible outliers in the data. This 
option is labeled on the Output directory tree as “Observations farthest 

Table 12.1 Selected AMOS Output: Assessment of Normality

Variable Min Max Skew C.R. Kurtosis C.R.

BDI16 1.000 4.000 1.177 15.903   1.898 12.823
BDI18 1.000 4.000 2.737 36.990   7.876 53.223
BDI19 1.000 4.000 4.139 55.940 19.876 134.313
BDI21 1.000 4.000 5.381 72.722 32.971 222.807
BDI4 1.000 4.000 2.081 28.128   4.939 33.379
BDI11 1.000 4.000 1.708 23.080   2.869 19.385
BDI12 1.000 4.000 4.270 57.710 20.302 137.193
BDI13 1.000 4.000 1.822 24.630   2.652 17.920
BDI15 1.000 4.000   .943 12.749     .794 5.363
BDI17 1.000 4.000 1.464 19.781   2.403 16.238
BDI20 1.000 4.000 3.921 52.989 16.567 111.956
BDI1 1.000 4.000 2.328 31.468   5.196 35.116
BDI2 1.000 4.000 2.597 35.099   6.003 40.569
BDI3 1.000 4.000 2.023 27.348   2.815 19.021
BDI5 1.000 4.000 3.340 45.137 11.620 78.527
BDI6 1.000 4.000 2.716 36.712   8.429 56.959
BDI7 1.000 4.000 2.209 29.861   6.238 42.152
BDI8 1.000 4.000   .784 10.590   –.838 –5.666
BDI9 1.000 4.000 3.240 43.785 11.504 77.744
BDI10 1.000 4.000 3.219 43.509 10.040 67.849
BDI14 1.000 4.000 2.569 34.722   5.127 34.646
Multivariate 549.848 292.839
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from the centroid (Mahalanobis distance)” (see Figure 12.3). As such, the 
program identifies any case for which the observed scores differ markedly 
from the centroid of scores for all 1,096 cases; Mahalanobis d-squared val-
ues are used as the measure of distance, and they are reported in decreas-
ing rank order. This information is presented in Table 12.2 for the first 11 
and final ranked scores. Here we see that Case #886 is the furthest from 
the centroid with a Mahalanobis d2 value of 220.485; this value is then fol-
lowed by two columns, p1 and p2. The p1 column indicates that, assuming 
normality, the probability of d2 (for Case #886) exceeding a value of 220.485 
is < .000. The p2 column, also assuming normality, reveals that the prob-
ability is still < .000 that the largest d2 value for any individual case would 
exceed 220.485. Although small numbers appearing in the first column 
(p1) are to be expected, small numbers in the second column (p2) suggest 
observations that are improbably far from the centroid under the hypoth-
esis of normality. Given the wide gap in Mahalanobis d2 values between 
Case #886 and the second case (#389), relative to all other cases, I would 
judge Case #886 to be an outlier and would consider deleting this case 
from further analyses. Indeed, based on the same rationale of comparison, 
I would probably delete the next three cases as well.

Table 12.2 Selected AMOS Output: Detection of Outliers Among Cases

Observations farthest from the centroid (Mahalanobis distance)  
(Group number 1)

Observation 
number

Mahalanobis 
d-squared p1 p2

886 220.485 .000 .000
389 160.701 .000 .000
369 155.071 .000 .000
464 139.782 .000 .000
391 130.636 .000 .000
392 130.636 .000 .000
415 129.104 .000 .000
956 127.226 .000 .000
664 124.657 .000 .000
825 124.656 .000 .000
390 123.972 .000 .000
• • • •
• • •
• • • •
• • • •
603 52.101 .000 .000
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Parameter estimates and standard errors

When bootstrapping is requested, AMOS provides two sets of informa-
tion as could be seen in the Output tree directory (see Figure 12.3); these 
include the regular ML parameter estimates, along with their standard 
errors (shown in the upper section of the tree), together with related boot-
strap information (shown in the lower section of the tree). We turn first to 
the regular ML estimates, which are presented in Table 12.3.

Sample ML estimates and standard errors
In the interest of space, the unstandardized and standardized estimates 
for only the factor loadings (i.e., first- and second-order regression weights) 
are presented here. Of primary interest are the standard errors (SEs) as 
they provide the basis for determining statistical significance related to the 
parameter estimates (i.e., estimate divided by standard error equals the 
critical ratio). Importantly, then, these initial standard errors subsequently 
can be compared with those reported for the bootstrapped samples (see 
Table 12.4). Sample ML estimates, standard errors, and critical ratios are 
reported in Table 12.3.

Bootstrap ML standard errors
Once the ML parameter estimates have been reported for the original 
sample of cases, the program then turns to results related to the bootstrap 
samples. AMOS provides a summary of the bootstrap iterations, which 
can be accessed from the Output directory tree. This option is visible in 
Figure 12.6, where it appears on the last line in the upper section of the 
tree. The summary reports two aspects of the iteration process: (a) mini-
mization history of the number of iterations required to fit the hypoth-
esized model to the bootstrap samples, and (b) the extent to which the 
process was successful. This information pertinent to the Swedish data is 
shown in Figure 12.7.

In reviewing Figure 12.7, you will note four columns. The first, labeled 
Iterations, reports that 19 iterations were needed to complete 500 bootstrap 
samples. The three method columns are ordered from left to right in 
terms of their speed and reliability. As such, minimization Method 0 is the 
slowest and is not currently used in AMOS 17; thus, this column always 
contains 0’s. Method 1 is reported in AMOS documentation to be gener-
ally fast and reliable. Method 2 represents the most reliable minimization 
algorithm and is used as a follow-up method if Method 1 fails during the 
bootstrapping process.

As evidenced from the information reported in Figure 12.7, Method 1 
was completely successful in its task of bootstrapping 500 usable samples; 
none was found to be unusable. The numbers entered in the Method 1 
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column represent the coordinate between number of bootstrap samples 
and number of iterations. For example, the number “65” on the fourth line 
indicates that for 65 bootstrap samples, Method 1 reached a minimum in 
four iterations.

It is important to note that, in the case of an original sample that either 
is small or is not continuously distributed (or both), it is quite conceivable 
that one or more of the bootstrap samples will have a singular covariance 
matrix. In such instances, AMOS may be unable to find a solution for some 
of the bootstrap samples. Given such findings, the program reports these 
failed bootstrap samples and excludes them from the bootstrap analysis 
(Arbuckle, 2007).

Before turning to the bootstrap results for our Swedish sample, I need 
first to explain how to obtain this information from the output tree as it 

Figure 12.6 AMOS Graphics: Output directory tree detailing retrieval of boot-
strap standard errors.

RT63727.indb   345 7/6/09   7:27:50 PM



346 Structural equation modeling with AMOS 2nd edition

is not exactly a straightforward retrieval process; that is, just clicking on 
the Estimates label listed in the bootstrap section will yield nothing. Let’s 
review this procedure by returning to Figure 12.6, where a breakdown of 
the needed output is captured. To initiate the process, you will need to 
double-click on Estimates in the upper ML section of the tree, which yields 
the Scalars label. Double-clicking on Scalars then produces the five catego-
ries of estimates shown in Figure 12.6. It is imperative that you click on 
one of these five types of estimates, which will highlight the one of inter-
est; regression weights are highlighted in the figure, although the high-
lighting is rather faded. Once you have identified the estimates of interest 
(in this case, the regression weights), the bootstrap section then becomes 
activated. Clicking on Bootstrap Standard Errors resulted in the standard 
error information presented in Table 12.4.

Figure 12.7 AMOS Graphics: Summary of bootstrap iterations.
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The first column (S.E.) in the table lists the bootstrap estimate of the 
standard error for each factor-loading parameter in the model. This value 
represents the standard deviation of the parameter estimates computed 
across the 500 bootstrap samples. These values should be compared with 
the approximate ML standard error estimates presented in Table 12.3. In 
doing so, you will note several large discrepancies between the two sets 
of standard error estimates. For example, in a comparison of the standard 
error for the loading of BDI Item 9 (BDI9) on the Negative Attitude factor 
across the original (S.E. = .057) and bootstrap (S.E. = .111) samples, we see 
a differential of 0.054, which represents a 95% increase in the bootstrap 
standard error over that of the ML error. Likewise, the bootstrap standard 
error for the loading of Item 3 (BDI3) on the same factor is 99% larger than 
the ML estimate. These findings suggest that the distribution of these 
parameter estimates appears to be wider than would be expected under 
normal theory assumptions. No doubt, these results reflect the presence 
of outliers, as well as the extremely kurtotic nature of these data.

The second column, labeled S.E. S.E., provides the approximate stan-
dard error of the bootstrap standard error itself. As you will see, these val-
ues are all very small, and so they should be. Column 3, labeled Mean, lists 
the mean parameter estimate computed across the 500 bootstrap samples. 
It is important to note that this bootstrap mean is not necessarily identical 
to the original estimate, and Arbuckle and Wothke (1999) have cautioned 
that, in fact, it can often be quite different. The information provided in 
Column 4 (Bias) represents the difference between the bootstrap mean 
estimate and the original estimate. In the event that the mean estimate of 
the bootstrap samples is higher than the original estimate, then the result-
ing bias will be positive. Finally, the last column, labeled S.E. Bias, reports 
the approximate standard error of the bias estimate.

Bootstrap bias-corrected confidence intervals
The last set of information to be presented here relates the 90% (default) 
bias-corrected confidence intervals for both the unstandardized and 
standardized factor-loading estimates, which are reported in Table 12.5. 
Although AMOS has the capability to produce percentile as well as bias-
corrected confidence intervals, the latter are considered to yield the more 
accurate values (Efron & Tibshirani, 1993). Values for BDI items 1, 4, and 16 
are replaced with dots (...) as these parameters were constrained to a non-
zero value for purposes of model identification. Bias-corrected confidence 
intervals are interpreted in the usual manner. For example, the loading of 
BDI14 on the factor of Negative Attitude has a confidence interval ranging 
from 1.021 to 1.494. Because this range does not include zero, the hypoth-
esis that the BDI14 factor loading is equal to zero in the population can be 
rejected. This information can also be derived from the p values, which 

RT63727.indb   351 7/6/09   7:27:52 PM



352 Structural equation modeling with AMOS 2nd edition

indicate how small the confidence level must be to yield a confidence 
interval that would include zero. Turning again to the BDI14 parameter, 
then, a p-value of .003 implies that the confidence interval would have to 
be at the 99.7% level before the lower bound value would be zero.

In this chapter, I have endeavored to give you a flavor of how AMOS 
enables you to conduct the bootstrap procedure. Due to space limitations, 
I have not attempted to provide you with details or examples related to 
the use of bootstrapping for comparisons of models and/or estimation 
methods. However, for readers who may have an interest in these types of 
applications, this information is well presented in the manual (Arbuckle, 
2007).

Endnote
 1. In Chapter 5, however, only two of the three residual variances were con-

strained equal.
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thirteenchapter 

Addressing the issue 
of missing data
Missing (or incomplete) data, an almost inevitable occurrence in social 
science research, may be viewed either as a curse or as a gold mine of 
untapped resources. As with other life events, the extent to which they 
are viewed either positively or negatively is a matter of perspective. For 
example, McArdle (1994) has noted that although the term “missing data” 
typically conjures up images of negative consequences and problems, such 
missingness can provide a wealth of information in its own right and, 
indeed, often serves as a useful part of experimental analyses. (For an 
interesting example in support of this statement, see Rosén, 1998.) In real-
ity, of course, the issue of terminology is moot. Of import is the extent to 
which, and pattern by which, data are incomplete, missing, or  otherwise 
unobserved, and the steps taken in addressing the situation.

The presence of missing data can occur for a wide variety of reasons 
that are usually beyond the researcher’s control. Some examples are as fol-
lows: absence on the day of data collection, failure to answer certain items 
in the questionnaire, refusal to answer sensitive items related to one’s age 
and/or income, equipment failure or malfunction, attrition of subjects (e.g., 
the family moved away, the individual no longer wishes to participate, or 
the subject dies), and so on. In contrast, data may be incomplete by design, a 
situation in which the researcher is in total control. Two examples suggested 
by Kline (1998) include the case where (a) a questionnaire is excessively long 
and the researcher decides to administer only a subset of items to each of 
several different subsamples, and (b) a  relatively inexpensive measure is 
administered to the entire sample, whereas another more expensive test is 
administered to a smaller set of randomly selected subjects. Needless to say, 
there may be many more examples that are not cited here.

Because missing data can seriously bias conclusions drawn from an 
empirical study, they must be addressed, regardless of the reason for their 
missingness. The extent to which such conclusions can be biased depends 
on both the amount and pattern of missing values. Unfortunately, to the 
best of my knowledge, there are currently no clear guidelines regarding 
what constitutes a “large” amount of missing data, although Kline (1998, 
p. 75) has suggested that they should probably constitute less than 10% of 
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the data. On the other hand, guidelines related to the pattern of incom-
plete data are now widely cited and derive from the seminal works of 
Rubin (1976), Allison (1987), and Little and Rubin (1987). In order for you 
to more fully comprehend the AMOS approach to handling incomplete 
data, it behooves us to review, first, the differential patterns of missing-
ness proposed by Rubin and by Little and Rubin.

Basic patterns of incomplete data
Rubin (1976) and Little and Rubin (1987) distinguished between three pri-
mary patterns of missing data: those missing completely at random (MCAR), 
those missing at random (MAR), and those considered to be nonignorable 
(i.e., systematic; NMAR). A brief description of each is now given.

MCAR represents the most restrictive assumption and argues that •	
the missingness is independent of both the unobserved values and 
the observed values of all other variables in the data. Conceptualizing 
the MCAR condition from a different perspective, Enders (2001) sug-
gested considering these unobserved values as representing a ran-
dom subsample of the hypothetically complete data. Indeed, Muthén, 
Kaplan, and Hollis (1987) noted that MCAR is typically what is meant 
when researchers use the expression, albeit imprecisely, “missing at 
random.”
MAR is a somewhat less restrictive condition than MCAR and argues •	
that the missingness is independent only of the missing values and 
not of the observed values of other variables in the data. That is to 
say, although the occurrence of the missing values, themselves, may 
be random, their missingness can be linked to the observed values 
of other variables in the data.
NMAR is the least restrictive condition and refers to missingness •	
that is nonrandom, or of a systematic nature. In other words, there is 
an existing dependency between the variables for which the values 
are missing and those for which the values are present. This condi-
tion is particularly serious because (a) there is no known statistical 
means to alleviate the problem, and (b) it can seriously impede the 
generalizability of findings.

Before reviewing various approaches to the handling of incomplete 
data, I consider it worthwhile to detour momentarily, in order to provide 
you with a simple fictitious example that can help in distinguishing between 
the two major patterns of missingness—MCAR and MAR. Indeed, Muthén 
et al. (1987) noted that most researchers, when confronted with incomplete 
data, typically assume that the missingness is MCAR when, in fact, they 
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are often MAR. Drawing on the works of Allison (1987) and Little and 
Rubin (1987), and paraphrasing Arbuckle (1996), suppose a questionnaire 
is composed of two items. One item taps into years of schooling; the other 
taps into income. Suppose, further, that while all respondents answer the 
education question, not everyone answers the income question. Within the 
framework of the missingness issue, the question is whether the incomplete 
data on the income variable are MCAR or MAR. Rubin reasoned that if a 
respondent’s answer to the income question is independent of both income 
and education, then the missing data can be regarded as MCAR. If, on the 
other hand, those with higher education are either more or less likely than 
others to reveal their income, but among those with the same level of educa-
tion, the probability of reporting income is unrelated to income, the missing 
data are MAR. Finally, given that, even among people with the same level of 
education, high-income individuals are either more or less likely to report 
their income, the missing data are not even MAR; the systematic pattern of 
this type of missingness makes them NMAR (see Enders, 2001; Jamshidian 
& Bentler, 1999). (For a thorough explanation and discussion of these three 
forms of missingness, readers are referred to Schafer & Graham, 2002.)

Once again, to give you a more complete understanding of the AMOS 
approach to the treatment of incomplete data, I consider it worthwhile 
to review strategies which, historically, have been those most commonly 
applied in dealing with missing data; these include listwise deletion, pair-
wise deletion, and single imputation. These methods are categorized as 
indirect approaches to the resolution of missing data.

Common approaches to handling incomplete data
Listwise deletion

By far, the most popular method for dealing with incomplete data is that 
of listwise deletion. Such popularity likely got its jumpstart in the 1980s, 
when numerous articles appeared in the SEM literature detailing various 
problems that can occur when the analysis of covariance structures is based 
on incomplete data (see, e.g., Bentler & Chou, 1987; Boomsma, 1985). Because 
SEM models are based on the premise that the covariance matrix follows 
a Wishart distribution (Brown, 1994; Jöreskog, 1969), complete data are 
required for the probability density. In meeting this requirement, research-
ers have therefore sought to modify incomplete data sets, through either 
removal of cases or the substitution of values for those that are unobserved. 
The fact that listwise deletion of missing data is by far the fastest and sim-
plest answer to the problem likely has led to the popularity of its use.

Implementation of listwise deletion simply means that all cases having 
a missing value for any of the variables in the data are excluded from all 
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computations. As a consequence, the final sample to be used in the analy-
ses includes only cases with complete records. The obvious disadvantage 
of the listwise deletion approach, then, is the loss of information result-
ing from the reduced sample size. As a result, two related problems sub-
sequently emerge: (a) the decrease in statistical power (Raaijmakers, 1999), 
and (b) the risk of nonconvergent solutions, incorrect standard errors, and 
other difficulties encountered in SEM when sample sizes are small (see, e.g., 
Anderson & Gerbing, 1984; Boomsma, 1982; Marsh & Balla, 1994; Marsh, 
Balla, & McDonald, 1988). Of course, the extent to which these problems 
manifest themselves is a function of both the size of the original sample and 
the amount of incomplete data. For example, if only a few cases have miss-
ing values, and the sample size is adequately large, then the deletion of these 
cases is likely a good choice. Finally, use of listwise deletion assumes that the 
incomplete data are MCAR (Arbuckle, 1996; Brown, 1994). Given the valid-
ity of this assumption, there will be consistent estimation of model param-
eters (Bollen, 1989a; Brown, 1994); failing such validity, the estimates will be 
severely biased, regardless of sample size (Schafer & Graham, 2002).

Pairwise deletion

In the application of pairwise deletion, only cases having missing values 
on variables tagged for a particular computation are excluded from the 
analysis. In contrast to listwise deletion, then, a case is not totally deleted 
from the entire set of analyses but, rather, only from particular analyses 
involving variables for which there are unobserved scores. The critical 
result of this approach is that the sample size necessarily varies across 
variables in the data set. This phenomenon subsequently leads to at least 
five major problems. First, the sample covariance matrix can fail to be non-
positive  definite, thereby impeding the attainment of a convergent solution 
(Arbuckle, 1996; Bollen, 1989a; Brown, 1994; Wothke, 1993; but see Marsh, 
1998). Second, the choice of which sample size to use in obtaining appro-
priate parameter estimates is equivocal (Bollen, 1989a; Brown, 1994). Third, 
goodness-of fit indices, based on the χ2 statistic, can be substantially biased 
as a result of interaction between the percentage of missing data and the 
sample size (Marsh, 1998). Fourth, given that parameters are estimated 
from different sets of units, computation of standard errors is problematic 
(Schafer & Graham, 2002). Finally, consistent with listwise deletion of miss-
ing data, pairwise deletion assumes all missing values to be MCAR.

Single imputation

A third method for dealing with incomplete data is to simply impute, 
or, in other words, replace the unobserved score with some estimated 
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value. Typically, one of three strategies is used to provide these estimates. 
Probably the most common of these is mean imputation, whereby the arith-
metic mean is substituted for a missing value. Despite the relative simplic-
ity of this procedure, however, it can be problematic in at least two ways. 
First, because the arithmetic mean represents the most likely score value 
for any variable, the variance of the variable will necessarily shrink; as a 
consequence, the correlation between the variable in question and other 
variables in the model will also be reduced (Brown, 1994). The overall net 
effect is that the standard errors will be biased, as will the other reported 
statistics. Second, if the mean imputation of missing values is substantial, 
the frequency distribution of the imputed variable may be misleading 
because too many centrally located values will invoke a leptokurtic distri-
bution (Rovine & Delaney, 1990). In summary, Arbuckle and Wothke (1999) 
cautioned that, because structural equation modeling is based on variance 
and covariance information, “means imputation is not a recommended 
approach” (see also Brown, 1994). In addition to this caveat, Schafer and 
Graham (2002) noted that mean substitution produces biased estimates 
under any type of missingness.

A second type of imputation is based on multiple regression proce-
dures. With regression imputation, the incomplete data serve as the dependent 
variables, while the complete data serve as the predictors. In other words, 
cases having complete data are used to generate the regression equation 
that is subsequently used to postulate missing values for the cases having 
incomplete data. At least three difficulties have been linked to regression 
imputation. First, although this approach provides for greater variability 
than is the case with mean imputation, it nevertheless suffers from the same 
limitation of inappropriately restricting variance. Second, substitution of the 
regression-predicted scores will spuriously inflate the covariances (Schafer 
& Olsen, 1998). Finally, Kline (1998) cautioned that this procedure may not 
be feasible in the case where the variable having the missing value does not 
covary, at least moderately, with other variables in the data.

The third procedure for imputing values may be termed pattern-
matching imputation. Although application of this approach is less com-
mon than the others noted above, it is included here because the SEM 
statistical package within which it is embedded is so widely used (LISREL 
8; Jöreskog & Sörbom, 1996a).1 With pattern-matching imputation, a miss-
ing variable is replaced with an observed score from another case in the 
data for which the response pattern across all variables is similar (Byrne, 
1998). One limitation of this procedure is that, in the event that no match-
ing case is determined, no imputation is performed. As a consequence, the 
researcher is still left with a proportion of the data that is incomplete. To 
date, however, I am not aware of any scholarly articles that have evaluated 
pattern-matching imputation. As a consequence, little is yet known about 
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the strengths and/or weaknesses associated with this approach within 
the context of SEM (Brown, 1994).

More recently, and certainly since publication of the first edition of 
this book, there has been substantial interest on the part of statistical 
researchers to establish sound methodological approaches to dealing 
with missing data. Indeed, much progress has been made in the develop-
ment of model-based methods capable of addressing many of the limi-
tations associated with the earlier techniques described above. These 
methods seek to replace the missing scores with estimated values based 
on a predictive distribution of scores that models the underlying pattern 
of missing data. As such, two models are defined—one representing the 
complete data and one representing the missing data. Based on the full 
sample, the software program subsequently computes estimates of the 
mean and variances such that they satisfy a statistical criterion (Kline, 
2005). In SEM, the most widely used criterion is the maximum likelihood 
(ML) algorithm.

At the present time, there appear to be two dominant model-based 
strategies—the full information maximum likelihood (FIML) estima-
tion and expectation maximization (EM) estimation, both of which are 
based on the ML algorithm (Enders, 2001). EM differs from the FIML 
approach in that it involves two steps in achieving the criterion; the 
latter may involve multiple imputations before a satisfactory criterion 
is reached. (For a general breakdown of these procedures, readers are 
referred to Kline, 2005; for a more extensive explanation and discussion 
of missing data as they bear on SEM analyses, see Enders, 2001; Schafer 
& Graham, 2002).

Beyond this work, there is now substantial interest in resolving many 
problematic issues related to the conduct of SEM based on incomplete 
data. To name just a few, these issues include (a) the presence of nonnor-
mality (Savalei & Bentler, 2005; Yuan & Bentler, 2000; Yuan, Lambert, & 
Fouladi, 2004), (b) the number of imputations needed to achieve an estab-
lished statistical criterion (Bodner, 2008; Hershberger & Fisher, 2003), and 
(c) the loss of data in longitudinal studies (Raykov, 2005).

The AMOS approach to handling missing data

AMOS does not provide for the application of any of the older indirect meth-
ods described earlier (listwise and pairwise deletion, and single impu-
tation). Rather, the method used in AMOS represents a direct approach 
based on ML estimation and, thus, is theoretically based (Arbuckle, 1996). 
In contrast, the indirect methods lack any kind of theoretical rationale and 
must therefore be considered as ad hoc procedures.

RT63727.indb   358 7/6/09   7:27:53 PM



Chapter thirteen: Addressing the issue of missing data 359

Arbuckle (1996) has described the extent to which ML estimation, in 
the presence of incomplete data, offers several important advantages over 
both the listwise and pairwise deletion approaches. First, where the unob-
served values are MCAR, listwise and pairwise estimates are consistent, 
but not efficient (in the statistical sense); ML estimates are both consistent 
and efficient. Second, where the unobserved values are only MAR, both 
listwise and pairwise estimates can be biased; ML estimates are asymp-
totically unbiased. In fact, it has been suggested that ML estimation will 
reduce bias even when the MAR condition is not completely satisfied 
(Muthén et al., 1987; Little & Rubin, 1989). Third, pairwise estimation, in 
contrast to ML estimation, is unable to yield standard error estimates or 
provide a method for testing hypotheses. Finally, when missing values 
are NMAR, all procedures can yield biased results. However, compared 
with the other options, ML estimates will exhibit the least bias (Little & 
Rubin, 1989; Muthén et al., 1987; Schafer, 1997). (For more extensive discus-
sion and illustration of the comparative advantages and disadvantages 
across the listwise, pairwise, and ML approaches to incomplete data, see 
Arbuckle, 1996.)

With this background on the major issues related to missing data, 
let’s move on to an actual application of ML estimation of data that are 
incomplete.

Modeling with AMOS Graphics
The basic strategy used by AMOS in fitting structural equation models 
with missing data differs in at least two ways from the procedure followed 
when data are complete (Arbuckle & Wothke, 1999). First, in addition to 
 fitting a hypothesized model, the program needs also to fit the completely 
saturated model in order to compute the χ2 value, as well as derived statis-
tics such as the AIC and RMSEA; the independence model, as for complete 
data, must also be computed. Second, because substantially more compu-
tations are required in the determination of parameter estimates when 
data are missing, the execution time can be more extensive (although my 
experience with the present application revealed this additional time to 
be minimal).

The hypothesized model

Because the primary interest in this application focuses on the extent to 
which estimates and goodness-of-fit indices vary between an  analysis 
based on complete data and one for which the data are missing, I have 
 chosen to use the same hypothesized CFA model as the one presented in 
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Chapter 3. Thus, rather than reproduce the schematic representation of 
this model again here, readers are referred to Figure 3.1.

Although the same sample of 265 grade 7 adolescents provides the 
base for both chapters, the data used in testing the hypothesized model 
in Chapter 3 were complete, whereas the data to be used in this  chapter 
have 25% of the data points missing. These artificially derived missing 
data points were deleted randomly. AMOS automatically recognizes 
missing data designations from many different formats. In the case of 
the current data, which are in ASCII format with comma delimiters, two 
adjacent delimiters indicate missing data. In this case, then, two adjacent 
commas (, ,) are indicative of missing data. For illustrative purposes, the 
first five lines of the incomplete data set used in the current chapter are 
shown here.

SDQ2N01,SDQ2N13,SDQ2N25,SDQ2N37,SDQ2N04,
SDQ2N16,SDQ2N28,SDQ2N40,SDQ2N10,SDQ2N22,
SDQ2N34,SDQ2N46,SDQ2N07,SDQ2N19,SDQ2N31,SDQ2
N436,,4,,3,4,,6,2,6,,5,,,,66,6,6,,6,6,6,6,5,,6,6,6,6,6,6
4,6,6,2,6,4,6,3,6,5,4,5,6,6,3,1
5,5,5,6,5,6,5,,5,6,3,5,6,6,6,5
6,5,,4,3,4,4,4,4,6,5,6,3,4,4,5

ML estimation of the hypothesized model incurs only one basic differ-
ence when data are incomplete rather than when they are complete. That is, in 
specifying the model for analyses based on incomplete data, it is necessary 
to activate the Analysis Properties dialog box and then check off Means and 
Intercepts on the Estimation tab. Although this dialog box was illustrated in 
Chapter 8 with respect to structured means models, it is reproduced again 
here in Figure 13.1.

Once this input information has been specified, the originally 
hypothesized model shown in Figure 3.1 becomes transformed into 
the one shown in Figure 13.2. You will quickly recognize at least one 
similarity with the model shown in Figure 8.11 (but for the low-track 
group) and the brief comparative display in Figure 8.12 with respect to 
the assignment of the 0. to each of the factors. Recall that these 0. values 
represent the latent factor means and indicate their constraint to zero. In 
both Figures 8.11 and 13.2, the means of the factors, as well as those for 
the error terms, are shown constrained to zero. Although the intercept 
terms were estimated for both the latent means model and the missing 
data model, their related labels do not appear in Figure 13.2. The reason 
for this important difference is twofold: (a) In testing for latent mean 
differences, the intercepts must be constrained equal across groups; and 
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(b) in order to specify these constraints in AMOS Graphics, it is neces-
sary to attach matching labels to the constrained parameters. Because 
we are working with only a single group in this chapter, the intercept 
labels are not necessary.

Selected AMOS output: Parameter and model  
summary information

Presented in Table 13.1, you will see both the parameter summary and 
model summary information pertinent to our current incomplete data sam-
ple. In the interest of pinpointing any differences between the incomplete 
and complete (see Table 3.3 and Figure 3.7) data samples, let’s now compare 
this information with respect to these same sections of the output file. 

Figure 13.1 Selection of the Estimate Means and Intercepts option on the Estimation 
tab of the Analysis Properties dialog box.
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SDQ2N01

SDQ2N13

GSC

err01
1

1
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1
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0,

0,

0,
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1

err25

0,

SDQ2N37
1

err37

0,
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err10
1

1
err22

0,

0,

0,

0,

SDQ2N34
1

err34

0,

SDQ2N46
1

err46

0,

SDQ2N07

SDQ2N19

MSC

err07
1

1
err19

0,

0,

SDQ2N31
1

err31

0,

SDQ2N43
1

err43

0,

SDQ2N04

SDQ2N16

ASC

err04
1

1
err16

0,

0,

0,

SDQ2N28
1

err28

0,

SDQ2N40
1

err40

0,

Figure 13.2 Hypothesized model of self-concept structure tested for sample with 
incomplete data.
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First, notice that, although the number of fixed parameters in the model 
is the same (20) for the two samples, the number of unlabeled parameters 
(i.e., estimated parameters) varies, with the incomplete data group having 
54 estimated parameters, and the complete data sample having 38. The 
explanation of this discrepancy lies with the estimation of 16 intercepts for 
the incomplete data sample (but not for the complete data sample). Second, 
observe that although the number of degrees of freedom (98) remains 
the same across complete and incomplete data samples, its calculation is 
based upon a different number of sample moments (152 versus 136), as 
well as a different number of estimated parameters (54 versus 38). Finally, 
note that, despite the loss of 25% of the data for the one sample, the over-
all χ2 value remains relatively close to that for the complete data sample 
(159.650 versus 158.511).

Selected AMOS output: Parameter estimates

Let’s turn our attention now to a comparison of parameter estimates 
between the incomplete and complete data samples. In reviewing these esti-
mates for the incomplete data sample (Table 13.2) and for the complete data 
sample (Table 3.4), you will see that the values are relatively close. Although 
the estimates for the incomplete data sample are sometimes a little higher 
but also a little lower than those for the complete data sample, overall, they 
are not very much different. Indeed, considering the substantial depletion 

Table 13.1 Selected AMOS Output: Parameter and Model Summary 
Information (Incomplete Data)

Parameter summary

Weights Covariances Variances Means Intercepts Total

Fixed 20 0 0 0 0 20
Labeled 0 0 0 0 0 0
Unlabeled 12 6 20 0 16 54
Total 32 6 20 0 16 74

Model summary
Number of distinct sample moments 152
Number of distinct parameters to be estimated 54
Degrees of freedom (152 – 54) 98
Minimum was achieved.
Chi-square = 159.650
Degrees of freedom = 98
Probability level = .000
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of data for the sample used in this chapter, it seems quite amazing that the 
estimates are as close as they are!

Selected AMOS output: Goodness-of-fit statistics

In comparing the goodness-of-fit statistics in Table 13.3 for the incomplete 
data sample, with those reported in Table 3.5 for the complete data sample, 
you will note some values that are almost the same (e.g., χ2 [as noted above]; 
RMSEA: .049 versus .048), while others vary slightly at the second or third 
decimal point (e.g., CFI: .941 versus .962). Generally speaking, however, the 

Table 13.2 Selected AMOS Output: Parameter Estimates (Incomplete Data)

Estimate S.E. C.R. P

Regression weights

SDQ2N37 <--- GSC .843 .152 5.549 ***
SDQ2N25 <--- GSC .950 .171 5.565 ***
SDQ2N13 <--- GSC 1.103 .192 5.741 ***
SDQ2N01 <--- GSC 1.000
SDQ2N40 <--- ASC 1.218 .197 6.191 ***
SDQ2N28 <--- ASC 1.439 .212 6.774 ***
SDQ2N16 <--- ASC 1.340 .195 6.883 ***
SDQ2N04 <--- ASC 1.000
SDQ2N46 <--- ESC .837 .149 5.632 ***
SDQ2N34 <--- ESC .609 .180 3.381 ***
SDQ2N22 <--- ESC .817 .127 6.440 ***
SDQ2N10 <--- ESC 1.000
SDQ2N43 <--- MSC .728 .064 11.358 ***
SDQ2N31 <--- MSC 1.037 .071 14.513 ***
SDQ2N19 <--- MSC .795 .079 10.104 ***
SDQ2N07 <--- MSC 1.000
***

Covariances

ASC <--> ESC .463 .089 5.182 ***
GSC <--> ESC .373 .084 4.418 ***
MSC <--> ASC .789 .140 5.638 ***
MSC <--> GSC .633 .127 4.975 ***
GSC <--> ASC .352 .080 4.406 ***
MSC <--> ESC .403 .108 3.732 ***
***
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goodness-of-fit statistics are very similar across the two samples. Given 
the extent to which both the parameter estimates and the goodness-of-fit 
statistics are similar, despite the 25% data loss for one sample, these find-
ings provide strong supportive evidence for the effectiveness of the direct 
ML approach to addressing the problem of missing data values.

Endnote
 1. The imputation is actually performed using the companion preprocessing 

package PRELIS (Jöreskog & Sörbom, 1996b).

Table 13.3 Selected AMOS Output: Goodness-of-Fit Statistics  
(Incomplete Data)

CMIN

Model NPAR CMIN DF P CMIN/DF

Your model 54 159.650 98 .000 1.629
Saturated model 152 .000 0
Independence model 16 1188.843 136 .000 8.741

Baseline comparisons

Model
NFI 

Delta1
RFI 
rho1

IFI 
Delta2

TLI 
rho2 CFI

Your model .866 .814 .943 .919 .941
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE

Your model .049 .035 .062 .541
Independence model .171 .162 .180 .000
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